期刊文献+

基于卷积神经网络的蛋胚活性精准检测方法研究 被引量:1

Research on accurate detection method of egg embryo activity based on convolutional neural network
下载PDF
导出
摘要 孵化的蛋胚是生产禽流感疫苗的载体,蛋胚的活性检测是疫苗生产中的关键环节,通过光电容积脉搏法检测蛋胚活性是提高蛋胚活性检测准确率的关键。为了提高蛋胚活性检测效率和检测准确率,采用滑动功率谱方法(PSD)将蛋胚脉搏波可视化,基于卷积神经网络对蛋胚活性进行精准分类。实验结果显示,采用卷积神经网络对单个蛋胚信号的计算时间仅为12.6 ms,与人工检测方法相比,检测效率提高近200倍。可视化后的蛋胚脉搏波的卷积神经网络分类准确率可达94.14%,其中活胚、死胚和弱胚的真阳率分别为99.74%、93.73%、84.39%。基于卷积神经网络的蛋胚活性分类模型,可在大规模生产中精准地辨识蛋胚活性,对疫苗生产过程具有重要的应用价值。 The hatched egg embryo is the carrier for the production of avian influenza vaccine.The activity detection of the egg embryo is a key link in the production of vaccine.The detection of the egg embryo activity by the photoelectric volume pulse method is the key to improve the accuracy of the egg embryo activity detection rate.In order to improve the detection efficiency and accuracy of egg embryo activity,the sliding power spectrum method was adopted to visualize egg embryo pulse wave,which accurately classified egg embryo activity based on convolutional neural network.The experimental results show that the calculation time of a single egg embryo signal using a convolutional neural network is only 12.6 ms,and the detection efficiency is increased by nearly 200 times in comparison with the manual detection method.The convolutional neural network classification accuracy of the visualized egg embryo pulse wave can reach 94.14%,among which the true positives of live embryos,dead embryos and weak embryos are 99.74%,93.73%,and 84.39%,respectively.The egg embryo activity classification model based on the convolutional neural network can accurately identify the egg embryo activity in large-scale production,which has important application value for the vaccine production process.
作者 郭盟 董新明 韩广 王慧泉 王忠强 赵喆 GUO Meng;DONG Xinming;HAN Guang;WANG Huiquan;WANG Zhongqiang;ZHAO Zhe(School of Life Sciences,Tianjin Polytechnic University,Tianjin 300387,China;Tianjin Rehabilitation Center,Tianjin 300191,China;Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems,Tianjin 300387,China;ECHOEY Technology(Tianjin)Co.,Ltd.,Tianjin 300308,China)
出处 《应用光学》 CAS CSCD 北大核心 2021年第2期268-275,共8页 Journal of Applied Optics
基金 天津市科技计划项目(18ZXRHSY00200) 天津市科技重大专项(18ZXJMTG00060) 天津市研究生科研创新项目(2019YJSS013)。
关键词 蛋胚 光电容积脉搏波 卷积神经网络 滑动功率谱 egg embryo photoplethysmographic pulse wave convolutional neural network sliding power spectrum
  • 相关文献

参考文献4

二级参考文献62

  • 1车轶,孙华英,彭沿平,曾涛,马原野.一种鸡胚胎心率记录的新方法[J].Zoological Research,2005,26(5):551-554. 被引量:5
  • 2滕晓菲,张元亭.移动医疗:穿戴式医疗仪器的发展趋势[J].中国医疗器械杂志,2006,30(5):330-340. 被引量:84
  • 3甘孟候.禽流感[M].北京:北京农业大学出版社,1995,2-10..
  • 4Dai X, Diamond JA. Intraeerebral hemorrhage: a life-threatening eomplieatlon of hypertension during pregnancy [ J ]. J Clin Hypertens( Greenwich), 2007, 9 ( 11 ) : 897 - 900.
  • 5Kikuya M, Hozawa A, Ohokubo T, et al. Prognostic significance of blood pressure and heart rate variabilitier: the ohasama study [ J]. Hypertension, 2000, 36(5 ) : 901 - 905.
  • 6Rhee S, Yang BH, Asada HH. Artifact-resistant, power-efficient design of finger-ring plethysmographic sensors. I. Design and analysis [ C ]// 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago: IEEE, 2000 : 2792 - 2795.
  • 7Nichols WW, Rourkc MFO. McDonald' s Blood Flow in Arteries Theoretical, experimental, and clinical principles [ M ]. (4th edition). London: Hodder Arnold Publication, 1998: 16- 18.
  • 8Hughes DJ, Bahbs CF, Gedes LA, et al. Measurements of Young' s modulus of elasticity of the canine aorta with ultrasound [J]. Ultrasonic Imaging, 1979, 1(4) : 356 -367.
  • 9Nitzan M, Khanokh B, Slovik Y. The difference in pulse transit time to the toe and finger measured by photoplethysmography [J]. Physiol Meas, 2002, 23(1): 85-93.
  • 10Lehmann ED, Hopkins KD and Gosling R. Aortic compliance measurements using Doppler ultrasound: in vivo biochemical correlates [J]. Ultrasound Med Biol, 1993, 19(9) : 683 -710.

共引文献56

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部