期刊文献+

基于稳定碳同位素的济南市二元羧酸类SOA的污染特征与形成机制 被引量:1

Pollution characteristics and formation mechanisms of dicarboxylic acids and related SOA in Jinan based on stable carbon isotope
原文传递
导出
摘要 为研究济南市冬季PM_(2.5)中二元羧酸类二次有机气溶胶(SOA)的来源、液相形成机制及影响因素,于2016年1—2月昼夜共采集46个PM_(2.5)样品,并对二元羧酸类SOA(包括二元羧酸、酮羧酸与α-二羰基化合物)与左旋葡聚糖的昼夜变化特征进行分析.研究结果表明,二元羧酸、α-二羰基化合物与左旋葡聚糖均呈昼低夜高的变化特征,而酮羧酸的昼夜变化特征与之相反.二元羧酸类SOA的分子组成特征以草酸(C_(2))的浓度最高,其次是丁二酸(C_(4))和丙二酸(C_(3)),与受生物质燃烧较显著的二元羧酸类SOA的分子组成是相同的.C_(2)/总二元羧酸的浓度(TDACs)、甲基乙二醛(mGly)/乙二醛(Gly)、C_(2)/SO^(2-)_(4)比值的昼夜变化特征与稳定碳同位素(δ^(13)C)的组成特征均表明济南市冬季夜晚气溶胶的氧化程度比白天深.C_(2)及其前体物(Gly、mGly)与SO^(2-)_(4)、相对湿度(RH)、液相水含量(LWC)与气溶胶的实际酸度(pH_(is))的相关性均较强,表明C_(2)及其前体物是在液相中经酸催化氧化反应产生的.夜晚二元羧酸类化合物的δ^(13)C值高于白天,且随着含碳量的升高二元羧酸的δ^(13)C值随之降低.C_(2)的δ^(13)C值随气溶胶的老化而偏正,这是由于同位素动力学效应(KIEs)导致的. To investigate the sources, formation mechanisms and influencing factors of dicarboxylic acids and related secondary organic aerosol(SOA) in PM_(2.5) from Jinan City during winter, a total of 46 PM_(2.5) samples were collected from January to February of 2017 on a day/night basis, and the diurnal variations of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and levoglucosan in PM_(2.5) were analyzed. The results showed that the concentrations of dicarboxylic acids, α-dicarbonyls and levoglucosan were higher in nighttime than those in daytime, but ketocarboxylic acids exhibited higher concentration during daytime than that during nighttime. Oxalic acid(C_(2)) is the most abundant species in the whole sampling period, followed by succinic acid(C_(4)) and malonic acid(C_(3)), which is similar to the molecular pattern observed biomass burning plumes. The diurnal variations of the mass ratios of C_(2)/TDCAs, mGly/Gly, C_(2)/SO^(2-)_(4) and stable carbon isotopic compositions(δ^(13)C) of major dicarboxylic acids and related SOA suggested that the nighttime aerosols were more aged than those in daytime. C_(2) and the precursors presented strong correlations with SO^(2-)_(4), relative humidity(RH), liquid water content(LWC) and particle in-situ pH(pH_(is)), indicating that these SOA were mainly originated from the aqueous-phase oxidation driven by acid-catalyzed oxidation. δ^(13)C of major dicarboxylic acids and related SOA were higher in nighttime than those in daytime, and the longer-chain dicarboxylic acids were more depleted in 13C than the shorter-chain dicarboxylic acids. An enrichment of δ^(13)C of C_(2) was found during the aging process of aerosol due to the kinetic isotope effects(KIEs).
作者 周瑞文 孟静静 王亚晨 李政 姚蒸蒸 衣雅男 刘晓迪 燕丽 侯战方 郭庆春 ZHOU Ruiwen;MENG Jingjing;WANG Yachen;LI Zheng;YAO Zhengzheng;YI Yanan;LIU Xiaodi;YAN Li;HOU Zhanfang;GUO Qingchun(School of Environment and Planning,Liaocheng University,Liaocheng 252000;Meteorological Meteorological Management Office of Mount Huang,Huangshan 245000;Chinese Academy for Environmental Planing,Beijing 100012)
出处 《环境科学学报》 CAS CSCD 北大核心 2021年第3期863-873,共11页 Acta Scientiae Circumstantiae
基金 国家重点研发计划(No.2017YFC0212406 2016YFC0207505) 国家自然科学基金项目(No.41505112 41702373) 山东省自然科学基金项目(No.BS2015HZ002)。
关键词 二元羧酸 二次有机气溶胶(SOA) 稳定碳同位素 左旋葡聚糖 液相形成机制 dicarboxylic acids secondary organic aerosols(SOA) levoglucosan stable carbon isotope aqueous formation mechanism
  • 相关文献

参考文献2

二级参考文献33

  • 1曹军骥,李顺诚,李杨,Judith C.Chow,Kochy Fung.2003年秋冬季西安大气中有机碳和元素碳的理化特征及其来源解析[J].自然科学进展,2005,15(12):1460-1466. 被引量:67
  • 2Clegg S L, Seinfeld J H. Thermodynamic models of aqueous solutions containing inorganic electrolytes and dicarboxylic acids at 298.15 K. 1. The acids as nondissoeiating components [J]. Journal of Physical Chemistry A, 2006,110( 17):5692-5717.
  • 3Cruz C N, Pandis S N. The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol [J]. Journal of Geophysical Research-Atmospheres, 1998,103 (Dll):13111-13123.
  • 4Facchini M C, Mircea M, Fuzzi S, et al. Cloud albedo enhancement by surface-active organic solutes in growing droplets [J]. Nature, 1999,401 (6750):257-259.
  • 5Wang G Xie M, Hu S, et al. Dicarboxylie acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation [J]. Atmospheric Chemistry and Physics, 2010,10(13):6087-6096.
  • 6Kawamura K, Ikushima K. Seasonal-changes in the distribution of dicarboxylic-acids in the urban atmosphere [J]. Environmental Science and Technology, 1993,27(10):2227-2235.
  • 7Ho K F, Lee S C, Cao J J, et al. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong [J]. Atmos. Environ., 2006,40(17):3030-3040.
  • 8Wang G H, Huang L M, Gao S X, et al. Identification of dicarboxylic acids and aldehyde of PMl0 and PM2.5 aerosols in Nanjing, China [J]. Atmos. Environ., 2002,36(12): 1941-1950.
  • 9Narokawa M, Kawamura K, Okada K, et al. Aircratt measurement of dicarboxylic acids in the free tropospheric aerosols over the westem to central North Pacific [J]. Tellus Series B-Chemical and Physical Meteorology, 2003,55(3):777-786.
  • 10Kubatova A, Vermeylen R, Claeys M, et al. Carbonaceous aerosol characterization in the Amazon basin, Brazil: novel dicarboxylic acids and related compounds [J]. Atmos. Environ., 2000, 34(29/30):5037-5051.

共引文献10

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部