期刊文献+

基于多头注意力机制的房颤检测方法 被引量:2

Atrial Fibrillation Detection Using Multi-Head Attention Mechanism
下载PDF
导出
摘要 近年来,随着人工智能的发展,深度学习模型已在ECG数据分析(尤其是房颤的检测)中得到广泛应用.本文提出了一种基于多头注意力机制的算法来实现房颤的分类,并通过PhysioNet 2017年挑战赛的公开数据集对其进行训练和验证.该算法首先采用深度残差网络提取心电信号的局部特征,随后采用双向长短期记忆网络在此基础上提取全局特征,最后传入多头注意力机制层对特征进行重点提取,通过级联的方式将多个模块相连接并发挥各自模块的作用,整体模型的性能有了很大的提升.实验结果表明,本文所提出的heads-8模型可以达到精度0.861,召回率0.862,F1得分0.861和准确率0.860,这优于目前针对心电信号的房颤分类的最新方法. In recent years,driven by the progress in artificial intelligence,deep learning models have been widely applied to ECG data analysis(especially the detection of atrial fibrillation).This study proposes an algorithm based on the multihead attention mechanism to classify atrial fibrillation,which is trained and validated through the public data set of the PhysioNet 2017 Challenge.Firstly,the local features of the ECG signal are extracted through the deep residual network.Then,the bidirectional long short-term memory network is built to extract the global features on this basis.Finally,the multi-head attention mechanism layer is used to extract the key features,and cascade modules greatly improve the performance of the overall model.The experimental results show that the proposed heads-8 model can achieve precision of 0.861,recall of 0.862,F1 score of 0.861,and accuracy of 0.860,which is better than the latest methods based on ECG signals for classifying atrial fibrillation.
作者 顾佳艳 蒋明峰 李杨 张鞠成 王志康 GU Jia-Yan;JIANG Ming-Feng;LI Yang;ZHANG Ju-Cheng;WANG Zhi-Kang(School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China;The Second Affiliated Hospital,School of Medicine,Zhejiang University,Hangzhou 310019,China)
出处 《计算机系统应用》 2021年第4期17-24,共8页 Computer Systems & Applications
关键词 ECG分类 深度学习 残差网络 双向长短期记忆网络 多头注意力机制 ECG classification deep learning residual network Bidirectional Long Short-Term Memory(Bi-LSTM)network multi-head attention mechanism
  • 相关文献

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部