摘要
利用Hlder插值不等式论证了仅需Sobolev空间有界弱收敛子序列在某个L^(p)(R^(N))空间上强收敛。借助更弱位势函数自身性质、有界区域上经典的Sobolev紧嵌入定理,巧妙地将全空间划分为3个特殊区间,证明了带有更弱位势函数的一类Sobolev空间紧嵌入定理。有效地解决了带有位势函数的椭圆偏微分方程解的存在性因工作空间失去紧性所产生的困难。
The Hlder interpolating inequality was used to prove that the Sobolev compact imbedding theorem holds if and only if the bounded sequence has some strong converge sequence for some L^(p)(R^(N)).By the properties of the weaker potential function,the compact imbedding theorem on the bound domain along with three special partitions of the entire space,the compact imbedding theorem was verified for some kind of Sobolev space with weaker potential function.And such a theorem could be useful for the study of the existence of a solution for some type of the elliptic equations which possess this kind of potential function when compactness for the functional space fails.
作者
林振生
LIN Zhensheng(School of Computer Science and Mathematics,Fujian University of Technology,Fuzhou 350118,China;College of Mathematics and Informatics,Fujian Normal University,Fuzhou 350117,China)
出处
《福建工程学院学报》
CAS
2021年第1期81-83,88,共4页
Journal of Fujian University of Technology
基金
国家自然科学基金面上项目(11871152)
福建省教育厅中青年教师教育科研项目(JT180326)
校科研启动基金项目(GY-Z20090)。