期刊文献+

知识表示学习方法研究综述 被引量:8

Survey of knowledge representation learning methods
下载PDF
导出
摘要 近年来,知识表示学习已经成为知识图谱领域研究的热点。为了及时掌握当前知识表示学习方法的研究现状,通过归纳与整理,将具有代表性的知识表示方法进行了介绍和归类,主要分为传统的知识表示模型、改进的知识表示模型、其他的知识表示模型。对每一种方法解决的问题、算法思想、应用场景、评价指标、优缺点进行了详细归纳与分析。通过研究发现,当前知识表示学习主要面临关系路径建模、准确率、复杂关系处理的挑战。针对这些挑战,展望了采用关系的语义组成来表示路径、采用实体对齐评测指标、在实体空间和关系空间建模,以及利用文本上下文信息以扩展KG的语义结构的解决方案。 In recent years,knowledge representation learning has become a hot topic in the field of knowledge graph.In order to grasp the current research status of knowledge representation learning methods in time,this paper introduced and classified the representative knowledge representation methods through induction and sorting,which were mainly divided into traditional knowledge representation model,improved knowledge representation model and other knowledge representation models.This paper summarized and analyzed the problems,algorithm ideas,application scenarios,evaluation indicators,advantages and disadvantages of each method in detail.Through research,this paper found that the current knowledge representation learning mainly faces the challenges of relationship path modeling,accuracy and complex relationship processing.Aiming at these challenges,this paper looked forward to using semantic composition of relationship to represent path,using entity alignment evaluation index,modeling in entity space and relationship space,and using text context information to expand the solution of KG’s semantic structure resolution.
作者 张正航 钱育蓉 行艳妮 赵鑫 Zhang Zhenghang;Qian Yurong;Xing Yanni;Zhao Xin(College of Software,Xinjiang University,Urumqi 830046,China;Key Laboratory of Signal Detection&Processing in Xinjiang Uygur Autonomous Region,Xinjiang University,Urumqi 830046,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第4期961-967,共7页 Application Research of Computers
基金 国家自然科学基金资助项目(61966035) 新疆维吾尔自治区智能多模态信息处理团队(XJEDU2017T002) 新疆维吾尔自治区研究生创新项目(XJ2019G072)。
关键词 知识图谱 知识表示学习 实体对齐 链接预测 三元组分类 knowledge graph knowledge representation learning entity alignment link prediction triple classification
  • 相关文献

参考文献8

二级参考文献225

  • 1史树明.自动和半自动知识提取[J].中国计算机学会通讯,2013.9(8):65-73.
  • 2张坤.面向知识图谱的搜索技术(搜狗)[EB/OL].[2015-02-18].http://www.cipsc.org.cn/kgl/.
  • 3李涓子.知识图谱:大数据语义链接的基石[EB/OL].[2015-02-20].http://www.cipsc.org,cn/kg2/.
  • 4Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41.
  • 5Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250.
  • 6Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19.
  • 7Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127.
  • 8Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 9Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394.
  • 10Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval [M]. Cambridge, UK: Cambridge University Press, 2008.

共引文献762

同被引文献110

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部