期刊文献+

基于实体相似性的知识表示学习方法 被引量:2

Entity similarity based knowledge graph embedding
下载PDF
导出
摘要 知识表示学习旨在将知识图谱中的实体和关系表示成低维稠密实值向量,能有效缓解知识图谱的数据稀疏性和显著提升计算效率。然而,现有大多数知识表示学习方法仅将实体视为三元组的一个组成部分,没有考虑实体自身具有的特质,如实体相似性。为了加强嵌入向量的语义表达,提出基于实体相似性的表示学习方法SimE。该方法首先利用实体的结构邻域度量实体的相似性,再将实体的相似性和拉普拉斯特征映射结合作为基于三元组事实的表示学习方法的约束,形成联合表示。实验结果表明,该方法在链接预测和三元组分类等任务上与目前最好的方法性能接近。 Knowledge representation learning aims to represent the entities and relationships in the knowledge graph as low-dimensional dense real-valued vectors,which can effectively alleviate the data sparsity of the knowledge graph and significantly improve the calculation efficiency.However,most existing knowledge representation learning methods only treat entities as an integral part of triples,and do not consider the characteristics of entities themselves,such as entity similarity.In order to strengthen the semantic expression of embedded vectors,this paper proposed a representation learning method SimE based on entity similarity.The method first used the structural domain of the entity to measure the similarity of the entity,and then combined the similarity of the entity and the Laplace feature map as a constraint of the representation learning method based on the fact of triples to form a joint representation.Experimental results show that the method is close to the best method currently in tasks such as link prediction and triple classification.
作者 文洋 张茂元 周礼全 张洁琼 袁贤其 Wen Yang;Zhang Maoyuan;Zhou Liquan;Zhang Jieqiong;Yuan Xianqi(School of Computer,Central China Normal University,Wuhan 430079,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第4期1008-1012,共5页 Application Research of Computers
基金 国家语委科研项目(YB135-40) 中央高校基本科研业务费专项资金资助项目(CCNU19TS019)。
关键词 知识图谱 知识表示学习 结构邻域 实体相似性 knowledge graph knowledge representation learning structural neighborhood entity similarity
  • 相关文献

参考文献1

二级参考文献82

  • 1Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41.
  • 2Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250.
  • 3Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19.
  • 4Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127.
  • 5Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 6Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394.
  • 7Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval [M]. Cambridge, UK: Cambridge University Press, 2008.
  • 8Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their eompositionality [C] //Proe of NIPS. Cambridge, MA: MIT Press, 2013:3111-3119.
  • 9Zhao Y, Liu Z, Sun M. Phrase type sensitive tensor indexing model for semantic composition [C] //Proc of AAAI. Menlo Park, CA: AAAI, 2015: 2195-2202.
  • 10Zhao Y, Liu Z, Sun M. Representation learning for measuring entity relatedness with rich information [C] //Proc of IJCAI. San Francisco, CA: Morgan Kaufmann, 2015: 1412-1418.

共引文献258

同被引文献9

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部