摘要
针对设备的健康预测缺乏大量样本且存在样本不均衡问题,提出基于改进粒子群优化算法优化均衡支持向量机(IPSO-BSVM)的健康预测模型。首先,提出动态非线性惯性权重对PSO进行优化;其次,提出了一种非线性多分类均衡支持向量机BSVM,以减小由于样本量不均衡引起的误差;然后利用改进后的PSO对BSVM参数进行优化;最后利用建立的IPSO-BSVM模型对设备进行状态识别及剩余寿命预测。仿真结果表明,提出方法能够有效解决小样本数据不均衡下的设备健康预测问题。
In view of the lack of abundant sample data and sample unbalanced problem in equipment health prognosis,this paper proposed a health prognosis model based on IPSO-BSVM.Firstly,it put forward the dynamic non-linear inertia weight to improve the PSO algorithm.Secondly,it introduced the balanced SVM to improve the performance of SVM.Thirdly,it applied the improved PSO algorithm to optimize the parameters of the balanced SVM.Finally,it used the IPSO-BSVM model for equipment state identification and residual useful life prognosis.The simulation results show that the proposed method can effectively solve the problem of equipment health prognosis under small and imbalanced sample data.
作者
位晶晶
刘勤明
叶春明
陈翔
Wei Jingjing;Liu Qinming;Ye Chunming;Chen Xiang(Business School,University of Shanghai for Science&Technology,Shanghai 200093,China)
出处
《计算机应用研究》
CSCD
北大核心
2021年第4期1119-1122,1127,共5页
Application Research of Computers
基金
国家自然科学基金资助项目(71840003,71632008)
上海市自然科学基金资助项目(19ZR1435600)。
关键词
状态识别
剩余寿命预测
小样本
BSVM
PSO
state identification
residual useful life prognosis
small sample
balanced support vector machine(BSVM)
PSO