期刊文献+

基于改进经验小波变换和最小二乘支持向量机的短期风速预测 被引量:21

SHORT-TERM WIND SPEED FORECASTING BASED ON IMPROVED EMPIRICALWAVELET TRANSFORM AND LEAST SQUARES SUPPORT VECTOR MACHINES
下载PDF
导出
摘要 针对原始风速信号非线性和非平稳性的特征,提出一种新的改进经验小波变换(IEWT)方法,该方法可将风速信号分解成一组有限带宽的子序列,以降低其不稳定性。在此基础上,结合最小二乘支持向量机(LSSVM),提出基于改进经验小波变换和最小二乘支持向量机(IEWT-LSSVM)的短期风速预测方法,并通过模拟退火粒子群优化算法(SAPSO)对相空间重构参数以及LSSVM模型的2个超参数进行共同优化。最后以华北某风电场采集的风速信号为算例,结果表明基于IEWT-LSSVM的预测模型能有效追踪风速信号的变化,在单步预测和多步预测上均具有较高的预测精度。 A new improved empirical wavelet transform(IEWT)method is proposed to treat with the nonlinearity and nonstationarity of original wind speed signal.This method decomposes wind speed signal into a set of band-limited sub-sequences to decrease instability.On this basis,combined with least squares support vector machine(LSSVM),a short-term wind speed forecasting model based on IEWT-LSSVM is proposed.The phase space reconstruction parameters and the hyper parameters of LSSVM model are optimized by simulated annealing particle swarm optimization(SAPSO).Finally,taking the wind speed data of a certain wind farm in North China as an example,the simulation results illustrate that the forecasting model based on IEWT-LSSVM can effectively track the change of wind speed signal,has high prediction accuracy in single-step prediction and multi-step prediction.
作者 向玲 邓泽奇 Xiang Ling;Deng Zeqi(Mechanical Engineering Department,North China Electric Power University,Baoding 071003,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2021年第2期97-103,共7页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51675178)。
关键词 风速预测 相空间重构 最小二乘支持向量机 模拟退火粒子群算法 经验小波变换 wind speed forecasting phase space reconstruction least squares support vector machine simulated annealing particle swarm optimization improved empirical wavelet transform
  • 相关文献

参考文献7

二级参考文献76

  • 1李天云,谢家安,张方彦,李晓晨.HHT在电力系统低频振荡模态参数提取中的应用[J].中国电机工程学报,2007,27(28):79-83. 被引量:54
  • 2YEH Poliang,LIU Peiling. Application of the wavelet transform and the enhanced Fourier spectrum in the impact echo test[J]. NDT and E International, 2008,41(5) :382-394.
  • 3LOH C H, WU T C, HUANG N E. Application of the empirical mode decomposition-hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses [J]. Bulletin of the Seismological Society of America, 2001,91 (5): 1339- 1357.
  • 4GILLES J. Empirical wavelet transform [J]. IEEE Transactions on Signals Processing, 2013, 61 ( 16 ) : 3999-4010.
  • 5GILLES J. TRAN G, OSHER S. 2D empirical transforms, wavelets, ridgelets and curvelets revisited[J]. SIAM Journal on Imagine Sciences, 2014,7 ( 1 ) : 157-186.
  • 6FRANCIS A, MURUGANANTHAM C. empirical wavelet transform and its applieation[J]. International Journal of Electrical, Electronics and Communication Engineering, 2015,1 ( 1 ) : 1-3.
  • 7FRANCIS A, MURUGANANTHAM C. An adaptive denoising method using empirical wavelet transform[J]. International Journal of Computer Applications, 2015,117(21) : 18-20.
  • 8Bouzgou H, Benoudjit N. Multiple architecture systemfor wind speed prediction [J ]. Applied Energy, 2011,88(7): 2463-2471.
  • 9Lei M,Luan Shiyan, Jiang Chuanwen, et al. A reviewon the forecasting of wind speed and generatedpower [j]. Renewable and Sustainable Energy Reviews,2009,13(4): 915-920.
  • 10Pelikan E,Eben K, Resler J, et al. Wind powerforecasting by an empirical model using NWP outputs[A]. International Conference on Environment andElectrical Engineering [C],Prague, Czech Republic,2010,45-48.

共引文献989

同被引文献249

引证文献21

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部