期刊文献+

基于长短期记忆网络分位数回归的短期风电功率概率密度预测 被引量:16

SHORT-TERM WIND POWER PROBABILITY DENSITY PREDICTION BASED ON LONG SHORT TERM MEMORY NETWORK QUANTILE REGRESSION
下载PDF
导出
摘要 针对风电功率确定性的点预测无法对预测结果进行风险评估以及现有静态预测模型难以描述风电功率长期相关性的现象,提出一种基于长短期记忆网络分位数回归(LSTMQR)的短期风电功率概率密度预测模型。该方法首先使用LSTMQR得到不同分位点下未来风电功率的预测结果;其次采用高斯核函数,将LSTMQR与核密度估计(KDE)相结合,进行短期风电功率概率预测,可得到未来风电功率预测点的概率密度函数,通过风电场的历史数据对所提模型以及基准模型进行对比验证,使用5种评价指标表明所提模型的预测性能更优。 Wind power forecasting is of great significance for the safe and stable operation of power systems and the optimal allocation of energy.Aiming at the fact that the wind power deterministic prediction cannot give the risk assessment of the forecast results and the existing static prediction model is difficult to describe the long-term correlation of wind power.A short-term wind power probability density prediction based on long short-term memory network quantile regression(LSTMQR)is proposed.The method first uses the long short-term memory network quantile regression to obtain the prediction results of future wind power under different quantile points.Secondly,combining LSTMQR with kernel density estimation(KDE)for short-term wind power probability prediction,the probability density function of future wind power prediction points can be obtained.The model is validated by a number of evaluation indicators based on the measured data of a domestic wind farm.The results show that the proposed model is better than the benchmark model.
作者 殷豪 黄圣权 孟安波 刘哲 Yin Hao;Huang Shengquan;Meng Anbo;Liu Zhe(College of Automation,Guangdong University of Technology,Guangzhou 510006,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2021年第2期150-156,共7页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(61876040) 广东省科技计划(2016A010104016)。
关键词 长短期记忆网络 风电功率 预测 风险评估 概率密度函数 long short-term memory wind power prediction risk assessment probability density function
  • 相关文献

参考文献12

二级参考文献140

  • 1Gang MU,Mao YANG,Dong WANG,Gangui YAN,Yue QI.Spatial dispersion of wind speeds and its influence on the forecasting error of wind power in a wind farm[J].Journal of Modern Power Systems and Clean Energy,2016,4(2):265-274. 被引量:13
  • 2杨洪耕,秦东,张正书,王刚.用Laguerre多项式描述谐波随机求和问题[J].电网技术,2005,29(14):26-29. 被引量:17
  • 3国家能源局.风电场功率预测预报管理暂行办法[Z].北京:国家发展改革委,2011.
  • 4Koenker R W, Bassett Jr G. Regression quantiles[J]. Econometrica, 1978, 46(1): 33-50.
  • 5Taylor J W. A quantile regression neural network approach to estimating the conditional density of multiperiod returns[J]. Journal of Forecasting, 2000, 19(4): 299-311.
  • 6Feng Y, Li R, Sudjianto A, et al. Robust neural network with applications to credit portfolio data analysis[J]. Statistics and Its Interface, 2010, 3(4): 437.
  • 7Cannon A J. Quantile regression neural networks: implementation in R and application to precipitation downscaling[J]. Computers & Geosciences, 2010, 37(9): 1277-1284.
  • 8Portnoy S, Koenker R. Adaptive L-estimation for linear models[J]. Annals of Statistics, 1989, 17(1): 362-381.
  • 9Ghadi M J,Gilani S H,Afrakhte H,et al.A novel heuristic method for wind farm power prediction:a case study[J].Electrical Power and Energy Systems,2014(63):962-970.
  • 10Costa A,Crespo A,Navarro J,et al.A review on the young history of the wind power short-term prediction[J].Renewable and Sustainable Energy Reviews,2008,12(6):1725-1744.

共引文献267

同被引文献201

引证文献16

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部