摘要
神经网络量子态是由人工神经网络所表示的量子态。得益于机器学习,尤其是深度学习近年来取得的突破性进展,神经网络量子态的研究得到了广泛的关注,成为当前的热点前沿方向。文章将介绍不同的神经网络量子态,其物理性质与典型应用场景,最新进展,以及面临的挑战。
Neural-network quantum states are states represented by artificial neural networks.Thanks to the dramatic progress achieved recently in the field of machine learning,especially deep learning,the study of neural-network quantum states has attracted tremendous attention across communities,and has become one of the most active directions of research.In this paper,we review different kinds of neural-network quantum states,their physical properties,and typical applications.In addition,we also discuss some most recent advances and future challenges along this direction.
作者
蒋文杰
邓东灵
JIANG Wen-Jie;DENG Dong-Ling(Institute for Interdisciplinary Information Sciences,Tsinghua University,Beijing 100084,China;Shanghai Qi Zhi Institute,Shanghai 200232,China)
出处
《物理》
CAS
北大核心
2021年第2期76-83,共8页
Physics
关键词
人工神经网络
量子多体问题
量子纠缠
贝尔不等式
artificial neural networks
quantum many-body problems
quantum entanglement
Bell inequality