摘要
研究一种能够自动抓取和自动对心的智能剖竹机上料机械手的设计优化方法。首先,根据生产技术要求设计并确定了机械手的整体结构;然后,利用多变量遗传算法优化了机械臂的尺寸参数,使机械手实际工作空间与期望工作空间重合,且结构长度最小。利用随机概率蒙特卡洛算法模拟的机械手目标空间初步验证了机械手可以抓取到不同直径毛竹。上料试验结果表明该机械手抓取不同直径毛竹的平均对心率为90.45%,抓取成功率为100%。
This article focuses on a charging manipulator for intelligent bamboo-splitting machines,characterized with automatic capturing and centering.Firstly,according to the technical requirements of production,the whole structure of this manipulator is developed.Then,the size parameters of this manipulator are optimized by means of the multi-variable genetic algorithm,so that the actual working space and the expected working space of this manipulator coincide with each other,and the structure length is minimized.The target space of this manipulator is simulated with the aid of the Monte-Carlo algorithm characterized with stochastic probability,which has preliminarily verified that bamboo with different diameters can be captured by means of this manipulator.The test results show that when bamboo with different diameters is captured by this manipulator,the average centering rate is 90.45%and the successful capturing rate is 100%.
作者
温永璐
刘天湖
李桂棋
聂湘宁
陈凤明
吴子迪
曾文
杨鹏辉
WEN Yong-lu;LIU Tian-hu;LI Gui-qi;NIE Xiang-ning;CHEN Feng-ming;WU Zi-di;ZENG Wen;YANG Peng-hui(College of Engineering,South China Agricultural University,Guangzhou 510642)
出处
《机械设计》
CSCD
北大核心
2021年第2期54-59,共6页
Journal of Machine Design
基金
国家重点研发计划项目(2018-YFD0101001)
广东省科技计划项目(2017A010102024,2017A020208052)。
关键词
智能剖竹机
上料机械手
设计优化
多变量遗传算法
蒙特卡洛算法
intelligent bamboo-splitting machine
charging manipulator
design and optimization
multi-variable genetic algorithm
Monte-Carlo algorithm