期刊文献+

H-代数偏序集

H-Algebraic Poset
原文传递
导出
摘要 本文引入了H-代数偏序集的概念,讨论了它的一些基本性质。得到如下主要结果:(1)举例说明了代数偏序集未必是H-代数偏序集;(2)偏序集是H-代数偏序集当且仅当强紧元是它的强基;(3)偏序集是H-代数偏序集当且仅当它的局部Scott拓扑是强代数格。 In this paper,the concept of H-algebraic poset is introduced,some basic properties of H-algebraic poset are investigated.The main results are:(1)An example is constructed to show that an algebraic poset may not be an H-algebraic poset;(2)A poset P is an H-algebraic poset iff the set of its strongly compact elements is a strong basis of P;(3)A poset is an H-algebraic poset iff its local Scott topology is a strongly algebraic lattice.
作者 张晓媛 徐晓泉 ZHANG Xiao-yuan;XU Xiao-quan(Department of Mathematics,Sichuan University,Chengdu 610065,China;Department of Fundamental Science,Hebei Finance University,Baoding 071051,China;School of Mathematics and statistics,Minnan Normal University,Zhangzhou 363000,China)
出处 《模糊系统与数学》 北大核心 2021年第1期34-39,共6页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11361028,11661057,11761034) 河北省高等学校科学技术研究基金资助项目(z2014069) 江西省自然科学基金资助项目(20161BAB2061004)。
关键词 H-代数偏序集 局部Scott拓扑 强基 强代数格 H-algebraic Poset Local Scott Topology Strong Basis Strongly Algebraic Lattice
  • 相关文献

参考文献4

二级参考文献64

  • 1Heckmann, R., An upper power domain construction in terms of strongly compact sets[M], Lecture Notes in Computer Science, Vol.598, Springer-Verlag, New York, 1992,272-293.
  • 2Rudin, M. E., Directed sets with converge [A], in: Proc. Riverside Symposium on Topology and Modern Analysis [C], 1980, 305-307.
  • 3Hofmann, K. H. & Mislove, M., Local compactness and continuous lattices [M], Lecture Notes in Mathematics, Vol. 871, Springer-Verlag, New York, 1981, 125-158.
  • 4Kou, H., Uk-admitting dcpos need not be Sober [A], in: Domain and Process [M],Kluwer Academic Publishers, 2001, 41-50.
  • 5Bernays, P., A system of axiomatic set theory Ⅲ [J], J. of Symbolic Logic, 7(1942),65-89.
  • 6Xu, X. Q., Strictly complete regularity of the Lawson topology on a continuous poset[J], Topology and its Applications, 103(2000), 37-42.
  • 7Scott, D. S., Continuous lattices [M], Lecture Notes in Math., Vol. 274, Springer-Verlag,1972, 97-136.
  • 8Lawson, J. D., Topological semilattices with small semilattices [J], J. London Math.Soc., 2(1969), 719-724.
  • 9Plotkin, G. D., A powerdomain construction [J], SIAM J. of Computing, 5(1976), 452-487.
  • 10Abramsky, S. & Jung, A., Domain theory [M], Handbook of Logic in Comuter Sci., Vol.3, Clarendon Press, Oxford, 1994.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部