期刊文献+

多源异构数据融合的城市私家车流量预测研究 被引量:5

Study of forecasting urban private car volumes based on multi-source heterogeneous data fusion
下载PDF
导出
摘要 通过有效地捕获城市私家车出行的时空特征,提出一种多源异构数据融合的私家车流量预测模型。首先,融合私家车轨迹和城市区域数据表征城市私家车的出行分布;其次,通过多视角时空图建模私家车出行和城市区域之间的动态关联,设计了多图卷积-注意力网络以提取车流量演变的时空特征;最后,进一步融合时空特征与天气等外部特征,联合预测私家车流量。在长沙市和深圳市采集的真实数据上进行验证,实验结果表明,与现有的模型相比,所提模型的均方根误差约降低了11.3%~20.3%,平均绝对百分误差约降低了10.8%~36.1%。 By effectively capturing the spatio-temporal characteristics of urban private car travel,a multi-source heterogeneous data fusion model for private car volume prediction was proposed.Firstly,private car trajectory and area-of-interest data were integrated.Secondly,the spatio-temporal correlations between private car travel and urban areas were modeled through multi-view spatio-temporal graphs,the multi-graph convolution-attention network(MGC-AN)was proposed to extract the spatio-temporal characteristics of private car travel.Finally,the spatio-temporal characteristics and external characteristics such as weather were integrated for joint prediction.Experiments were conducted on real datasets,which were collected in Changsha and Shenzhen.The experimental results show that,compared with the existing prediction model,the root mean square error of the MGC-AN is reduced 11.3%~20.3%,and the average absolute percentage error is reduced 10.8%~36.1%.
作者 刘晨曦 王东 陈慧玲 李仁发 LIU Chenxi;WANG Dong;CHEN Huiling;LI Renfa(College of Computer Science and Electronic Engineering,Hunan University,Changsha 410082,China)
出处 《通信学报》 EI CSCD 北大核心 2021年第3期54-64,共11页 Journal on Communications
基金 国家自然科学基金资助项目(No.61272061) 地理信息工程国家重点实验室开放基金资助项目(No.SKLGIE2018-M-4-3)。
关键词 多源异构数据 兴趣区域 图神经网络 multi-source heterogeneous data area of interest graph neural network
  • 相关文献

参考文献3

二级参考文献73

  • 1SCHUESSLER N; AXHAUSEN K. Processing raw data from globalpositioning systems without additional information[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009(2105): 28-36.
  • 2DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its carica- ture[J]. Cartographica: The International Journal for Geographic In- formation and Geovisualization, 1973, 10(2): 112-122.
  • 3MERATNIA N, ROLF A. Spatiotemporal compression techniques for moving point objects[A]. Advances in Database Teclmology-EDBT [C]. 2004.765-782.
  • 4ZHENG Y, et al. Mining interesting locations and travel sequences from GPS trajectories[A]. Proceedings of the 18th International Con- ference on World Wide Web[C]. 2009.
  • 5PALMA A T, et al. A clustering-based approach for discovering inter- esting places in trajectories[A]. Proceedings of the 2008 ACM Sympo- sium on Applied Computing[C]. 2008.
  • 6GREENFELD J S, Matching GPS observations to locations on a digi- tal map[A]. Trartsportation Research Board 81st Annual Meeting[C]. 2002.
  • 7BRAKATSOULAS S, et al. On map-matching vehicle tracking data[A]. Proceedings of the 31st International Conference on Very Large Data Bases[C]. 2005.
  • 8NEWSON P, KRUMM J. Hidden Markov map matching through noise and sparseness[A]. Proeeedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Sys- tems[C]. 2009.
  • 9LIU K, et al. Effective map-matching on the most simplified road network[A]. Proceedings of the 20th International Conference on Ad- vances in Geographic Information Systems[C]. 2012.
  • 10ACM. LI S, et al. Quick geo-fencing using trajectory partitioning and botmd- ary simplification[A]. Proceedings of the 21st ACM SIGSPATIAL In- ternational Conference on Advances in Geographic Information Sys- tems[C]. 2013.

共引文献56

同被引文献40

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部