摘要
结合阀控系统响应速度快和泵控系统能量效率高的优势,提出了一种泵阀并联系统,并研究了该系统的智能控制方法。首先针对泵阀并联系统中的泵控子系统设计了可以实现权值自适应调节的单神经元PID控制器,然后针对泵阀并联系统中阀控子系统的参数不确定性和外负载干扰问题设计了RBF神经网络滑模控制器,并利用Lyapunov函数证明了闭环系统的稳定性。最后搭建了泵阀并联电液位置伺服系统的Matlab/Simulink和AMESim联合仿真模型。仿真结果表明,泵控子系统的单神经元PID控制器相比于传统PID控制器具有更好的转速跟踪控制性能,阀控子系统的RBF神经网络滑模控制器相比于传统PID控制器和传统滑模控制器具有更高的位置跟踪精度和更强的抗干扰能力,所提出的泵阀并联智能控制方法有效改善了系统的控制性能。
In light of the valve control system s advantages of fast response and high energy efficiency,a pump-valve parallel electro-hydraulic position servo system was proposed,and its intelligent control method is studied.Firstly,a single neuron PID controller,which can realize the self-adaptive adjustment of the weight,is designed for the pump-controlled subsystem of the pump-valve parallel system.Secondly,a RBF(Radial Basis Function)neural network-based sliding mode controller was designed for the valve-controlled subsystem of the pump-valve parallel system.The Lyapunov function was designed to prove the stability of the closed-loop system.Finally,the co-simulation was conducted by using Matlab/Simulink and AMESim.The co-simulation results show that the single neuron PID controller of the pump-controlled subsystem has better speed tracking control performance than the traditional PID controller.The RBF neural network-based sliding mode controller of the valve-controlled subsystem has better position tracking accuracy and stronger anti-interference ability than the traditional PID controller.The proposed intelligent control method can significantly improve the control performance of the pump-valve parallel system.
作者
汪成文
郭新平
张震阳
刘华
WANG Chengwen;GUO Xinping;ZHANG Zhenyang;LIU Hua(College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China;Key Laboratory of Advanced Transducers and Intelligent Control System of the Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China;The State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University,Hangzhou 310058,Zhejiang,China)
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021年第3期25-33,共9页
Journal of South China University of Technology(Natural Science Edition)
基金
山西省重点研发计划项目(201903D121069)
山西省回国留学人员科研教研资助项目(HGKY2019016)
流体动力与机电系统国家重点实验室开放基金资助项目(GZKF-201720)。
关键词
泵阀并联系统
单神经元
RBF神经网络
滑模控制
智能控制
pump-valve parallel system
single neuron
RBF neural network
sliding mode control
intelligent control