期刊文献+

一类具有非单调传染率的随机SIQR传染病模型的动力学分析 被引量:1

Dynamic analysis of a stochastic SIQR epidemic model with non-monotonic infection rate
下载PDF
导出
摘要 建立一类具有非单调传染率的SIQR随机传染病模型。利用停时理论,证明了该模型全局解的存在唯一性;通过Liapunov函数方法并结合伊藤公式,讨论了随机系统的解在相应确定模型的无病平衡点附近的振荡行为,并且得到了该模型的灭绝性和存在唯一平稳分布的充分条件。最后,数值模拟显示了模型的解与相应的确定性模型解的渐近行为的差异。 A stochastic SIQR epidemic model with nonmonotonic transmission rate is formulated.The existence and uniqueness of global solution to the model are obtained by using the stopping time theory.By using the Liapunov function method and the Ito’s formula,the oscillation behavior of the solutions of the stochastic model near the disease-free equilibrium point of the corresponding deterministic model is discussed.Sufficient conditions for the extinction and the existence of a unique stationary distribution are obtained.Finally,the numerical simulations results show the difference of asymptotic behavior between the model solution and the corresponding deterministic model solution.
作者 马苓涓 张太雷 李志民 MA Lingjuan;ZHANG Tailei;LI Zhimin(School of Science,Chang’an University,Xi’an 710064,China)
机构地区 长安大学理学院
出处 《南昌大学学报(理科版)》 CAS 北大核心 2020年第6期515-523,共9页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(11701041) 陕西省自然科学基础研究计划(2018JM1011)。
关键词 随机传染病模型 伊藤公式 平稳分布 灭绝性 Stochastic epidemic model Ito’s formula Disease extinction Stationary distribution
  • 相关文献

参考文献4

二级参考文献20

  • 1王丽丽,徐瑞.一类具有治愈率的HBV病毒感染模型的全局稳定性[J].生物数学学报,2014,29(2):253-258. 被引量:2
  • 2LI Y,GAO H. Existence, Uniqueness and Global As- ymptotic Stability of Positive Solutions of a Predatorp-rey System with Holling II Functional Responsewith Random Perturbation [J]. Nonlinear Analysis, 2008, 68:1694-1705.
  • 3LI S Y,XIONG Z L,WANG X. The Study of a Preda- tor-prey System with Group Defense and Impulsive Control Strategy[J]. Applied Mathematical Modelling, 2010,34 : 2546-2561.
  • 4PATHAK Sweta, MAITI Alakes, SAMANTA G P. Rich Dynamics of a Food Chain Model with Hassell- Varley Type Functional Responses[J]. Applied Mathe- matics and Computation, 2009,208 : 303-317.
  • 5JI C Y,JIANG D Q,LI X Y. Qualitative Analysis of a Stochastic Ratio-dependent Predator-prey System[J]. Journal of Computational and Applied Mathematics, 2011,235:1326-1341.
  • 6LIU M,WANG K. Persistence and Extinction in Sto- chastic Non-autonomous Logistic Systems[J]. J Math Anal Appl,2011 ,375:443-457.
  • 7ARNOLD L. Stochastic Differential Equations:Theory and Applications[M]. New York:Wiley, 1972.
  • 8MAO X. Stochastic Differential Equations and Applica- tions[M]. New York: Horwood, 1997.
  • 9CHEN L, CHEN J. Nonlinear Biological Dynamical System[M]. Beijing: Science Press, 1993.
  • 10JI C,JIANG D, Shi N. Analysis of a Predator-prey Model with Modified Leslie-Gower and Holling-type II Schemes with Stochastic Perturbation [J]. J Math Anal Appl, 2009,359 : 482-498.

共引文献10

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部