期刊文献+

知识图谱的用户兴趣向量化方法及应用 被引量:1

User interest vector method based on knowledge graph and its application
下载PDF
导出
摘要 为用户推荐其感兴趣的新闻内容,已成为了各大互联网新闻平台的首要技术目标。传统的新闻推荐方法主要是基于用户间的相似度或新闻内容间的相似度产生推荐列表。以上两种推荐方法虽然有效,但却忽略了新闻文本中存在的语义信息。知识图谱是一种描述实体以及实体之间链接关系的语义网络,基于知识图谱实现精准推荐是推荐系统目前的研究热点。本文基于知识图谱提出了一种用户兴趣向量的计算方法,在此基础上结合先进的卷积神经网络来构建推荐模型。所提出的基于知识图谱的新闻推荐方法,能借助知识图谱提取新闻文本中的部分语义信息,并将其应用于计算用户的兴趣向量,从而产生较好的符合用户语义的推荐结果。 Recommending news content of interest to users has become the primary technical goal of Internet news platforms.The traditional news recommendation method mainly generates a recommendation list based on the similarity between users or contents.Although the above two recommended methods are effective,they ignore the semantic information in the news text.Knowledge graph is a kind of semantic network describing entities and relationships between entities.It is a current research hot spot in recommendation systems to implement accurate recommendation based on knowledge graph.This paper proposes a calculation method of user interest vector based on knowledge graph,and then combines it with convolutional neural network to build a recommendation model.The proposed knowledge graph based news recommendation method can use knowledge graph to extract part of the semantic information in news text and apply it to calculate the user’s interest vector,so as to produce a recommendation result that better matches the user’s semantics.
作者 沈华 熊开宇 闫斌 邱桃荣 SHEN Hua;XIONG Kaiyu;YAN Bin;QIU Taorong(Nanchang University School of Management,Nanchang 330031,China;Nanchang University School of Software,Nanchang 330031,China;Nanchang University School of Information Engineering,Nanchang 330031,China)
出处 《南昌大学学报(理科版)》 CAS 北大核心 2020年第6期610-616,共7页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助资助(61662045,81460769)。
关键词 新闻推荐 知识图谱 用户兴趣向量 卷积神经网络 news recommendation knowledge graph user interest vector convolutional neural network
  • 相关文献

参考文献7

二级参考文献175

  • 1刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:59
  • 2史树明.自动和半自动知识提取[J].中国计算机学会通讯,2013.9(8):65-73.
  • 3张坤.面向知识图谱的搜索技术(搜狗)[EB/OL].[2015-02-18].http://www.cipsc.org.cn/kgl/.
  • 4李涓子.知识图谱:大数据语义链接的基石[EB/OL].[2015-02-20].http://www.cipsc.org,cn/kg2/.
  • 5Pang B, Lee L. Seeing stars: Exploiting class relation- ships for sentiment categorization with respect to rating scales[C]//Proceedings o~ the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005: 115-124.
  • 6LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [C]//Pro- ceedings of the IEEE, 1998, 86(11) : 2278-2324.
  • 7Yih W, He X, Meek C. Semantic parsing for single-rela- tion question answering[C]//Proceedings of ACL 2014.
  • 8Shen Y, He X, Gao J, et al. Learning semantic repre- sentations using convolutional neural networks for web search[C]//Proceedings of the companion publication of the 23rd international conference on World wide web companion. International World Wide Web Confer- ences Steering Committee, 2014: 373-374.
  • 9Blunsom P, Grefenstette E, Kalehbrenner N. A conv- olutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Associ- ation for Computational Linguistics. 2014.
  • 10Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch[J].The Journal of Ma- chine Learning Research, 2011, 12: 2493-2537.

共引文献1642

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部