期刊文献+

基于多模型融合Stacking集成学习的异常用电检测方法研究 被引量:3

Research on Abnormal Electricity Detection Method Based on Multi-model by Stacking Ensemble Learning
下载PDF
导出
摘要 针对单一异常用电检测方法对于存在不平衡性的数据集检测效率普遍不高的问题,提出了一种基于多模型融合Stacking集成学习的异常用电检测方法。首先,以居民用电数据作为研究对象,分析用户在习惯上表现的不同特征,结合不平衡处理技术和分类预测算法进行研究;其次,为了提高模型的整体性能,采用量子遗传算法对集成学习模型中的参数做优化处理;最后,通过云南某地区用电数据集进行验证,证明所提模型相比单一学习模型检测的准确率有明显提升,对提升异常排查效率,降低电力公司的运营成本具有重要意义。 Aiming at solving the problem that the efficiency of single abnormal power detection method is generally not high,an abnormal power detection method based on multi-model by Stacking ensemble learning is introduced.Firstly,taking the residential electricity data as the research object,and based on the analysis of different characteristics of users’habits,this paper studies the imbalance processing technology and classification prediction algorithm.Secondly,in order to improve the overall performance of the model,the quantum genetic algorithm is used to optimize the parameter in the ensemble learning model.Finally,through verifying a data set of electricity consumption in a certain area of Yunnan,it is proved that the accuracy of the proposed model is significantly improved compared with a single learning model,which is of great significance for improving the efficiency of abnormal detection and reducing the operating cost of power companies.
作者 邝萌 李英娜 李川 曹敏 KUANG Meng;LI Yingna;LI Chuan;CAO Min(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;Yunnan Key Laboratory of Computer Technology Application,Kunming 650500,China;Electric Power Research Institute,Yunnan Power Grid Co.,Ltd.,Kunming 650217,China)
出处 《电力科学与工程》 2021年第3期23-29,共7页 Electric Power Science and Engineering
基金 国家自然科学基金(61962031,51567013)。
关键词 异常用电检测 多模型融合 不平衡处理技术 分类预测算法 Stacking集成学习 abnormal electricity detection multi-model fusion imbalance processing technology classification prediction algorithm Stacking ensemble learning
  • 相关文献

参考文献3

二级参考文献38

  • 1中国电机工程学会电力信息化专业委员会.中国电力大数据发展白皮书(2013)[R].北京:中国电力出版社,2013.
  • 2Yap K S,Tiong S K,Nagi J,et al.Comparison of supervised learning techniques for non-technical loss detection in power utility[J].International Review on Computers and Software,2012,7(2):626-636.
  • 3Nagi J,Yap K S,Tiong S K,et al.Nontechnical loss detection for metered customers in power utility using support vector machines[J].IEEE Transactions on Power Delivery,2010,25(2):1162-1171.
  • 4León C,Biscarri F,Monedero I,et al.Variability and trend-based generalized rule induction model to NTL detection in power companies[J].IEEE Transactions on Power Systems,2011,26(4):1798-1807.
  • 5Fontugne R,Tremblay N,Borgnat P,et al.Mining anomalous electricity consumption using ensemble empirical mode decomposition[C]//2013 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).Vancouver,BC:IEEE,2013:5238-5242.
  • 6Nagi J,Yap K S,Tiong S K,et al.Improving SVM-based nontechnical loss detection in power utility using the fuzzy inference system[J].IEEE Transactions on Power Delivery,2011,26(2):1284-1285.
  • 7Keogh E,Lin J,Lee S H,et al.Finding the most unusual time series subsequence:algorithms and applications[J].Knowledge and Information Systems,2007,11(1):1-27.
  • 8Hodge V,Austin J.A survey of outlier detection methodologies[J].Artificial Intelligence Review,2004,22(2):85-126.
  • 9Monedero I,Biscarri F,León C,et al.Detection of frauds and other non-technical losses in a power utility using Pearson coefficient,Bayesian networks and decision trees[J].International Journal of Electrical Power & Energy Systems,2012,34(1):90-98.
  • 10Nizar A H,Dong Z Y,Wang Y.Power utility nontechnical loss analysis with extreme learning machine method[J].IEEE Transactions on Power Systems,2008,23(3):946-955.

共引文献217

同被引文献28

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部