期刊文献+

基于邻域图的低秩投影学习 被引量:1

Low-Rank Projection Learning Based on Neighbor Graph
下载PDF
导出
摘要 特征提取算法通常只单独用到了数据的局部结构或者整体结构,这样将得不到全局最优投影矩阵,且投影矩阵不具备很好的可解释性。为此,提出了一种基于邻域图的低秩投影学习算法。该算法通过在数据的重构残差上施加图约束来保持数据的局部结构,同时引入低秩项来保持整体结构;算法利用L_(2),1范数行稀疏的性质对投影矩阵进行约束,这样可以剔除冗余特征,提高投影矩阵的可解释性;并且算法引入噪声稀疏项来减弱样本本身存在噪声的干扰。模型采用交替迭代方法求解,在多个数据集上的实验结果表明该算法能有效地提高分类精度。 The feature extraction algorithms only use the local structure or the global structure of data,so they will not get the global optimal projection matrix,and projection matrix does not have good interpretability.In this paper,a low-rank projection learning algorithm based on neighborhood graph is proposed.The algorithm imposes the graph constraint on the reconstruction error of data to maintain the local structure of data,and introduces a low-rank term to preserve the global structure;the property of L_(2),1 norm row sparsity is used to constrain the projection matrix.In this way,redundant features can be eliminated,and the interpretability of projection matrix can be improved.Meanwhile,a noise sparse term is introduced to weaken the interference of noise from samples.The model is solved by alternating iteration method,and the experimental results on multiple datasets show that the algorithm can effectively improve the classification accuracies.
作者 胡文涛 陈秀宏 HU Wentao;CHEN Xiuhong(School of Digital Media,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第7期209-214,共6页 Computer Engineering and Applications
基金 江苏省研究生科研与实践创新计划项目(KYCX18_1871)。
关键词 图像处理 特征提取 低秩表示 人脸识别 image processing feature extraction low-rank representation face recognition
  • 相关文献

参考文献6

二级参考文献34

  • 1Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 2Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.Fisherfaces:Recognition using class specific linear projection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 3He Xiaofei,Yan Shuicheng,Hu Yuxiao,et al.Face recognition using laplacian-faces[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.
  • 4Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 5Tenenbaum J B,de Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 6Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.
  • 7Yu Weiwei,Teng Xiaolong,Liu Chongqing.Face recognition using discriminant locality preserving projections[J].Image and Vision Computing,2006,24(3):239-248.
  • 8Zhi Ruicong,Ruan Qiuqi.Facial expression recognition based on two-dimensional discriminant locality preserving projections[J].Neurocomputing,2008,71:1730-1734.
  • 9Yu Weiwei.Two-dimensional discriminant locality preserving projections for face recognition[J].Pattern Recognition Letter,2009,30:1378-1383.
  • 10Niu Ben,Yang Qiang,Shiu S C K.Two-dimensional laplacianfaces method for face recognition[J].Pattern Recognition,2008,41:3237-3243.

共引文献56

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部