期刊文献+

基于无映射数据集的生成对抗网络图像生成算法研究

Research on Image Generation Algorithm of Generative Adversarial Network Based on Unmapped Data Set
下载PDF
导出
摘要 生成对抗网络(GAN)与图像处理的结合一直受到机器视觉领域研究者的推崇,GAN凭借其强大的网络结构和特征学习能力,在图像生成和转换领域尤为出色。为了研究基于生成对抗网络的图像生成算法,对CycleGAN算法进行了重点研究,并结合Pix2Pix算法进行比较分析,得出实验结果。根据人工智能领域的发展提出了可行算法的改进方向,并对GAN在图像生成领域的发展趋势提出了预测。 In recent years,the combination of Generative Adversarial Networks(GAN)and image processing had been highly respected by researchers in the field of machine vision.With its powerful network structure and feature learning capabilities,GAN was particularly excellent in the field of image generation and conversion.In order to study the image generation algorithm based on the Generative Adversarial Network,this paper focused on the CycleGAN algorithm,and combined the Pix2Pix algorithm for comparative analysis,and obtained the experimental results.According to the development of artificial intelligence field,the improvement direction of feasible algorithm was proposed,and the development trend of GAN in the field of image generation was predicted.
作者 姚成思 齐亚莉 夏浩昌 丁忠祥 YAO Chengsi;QI Yali;XIA Haochang;DING Zhongxiang(College of Information Engineering,Beijing Institute of Graphic Communication,Beijing 102600,China)
出处 《北京印刷学院学报》 2021年第3期147-150,共4页 Journal of Beijing Institute of Graphic Communication
基金 研究生教育深化改革与质量提升项目(21090120021)。
关键词 生成对抗网络(GAN) 图像生成 CycleGAN Pix2Pix generative adversarial network(GAN) image generation CycleGAN Pix2Pix
  • 相关文献

参考文献7

二级参考文献3

共引文献183

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部