期刊文献+

基于带有事件触发机制的集员滤波的RSSI室内移动定位

RSSI-based Indoor Localization for Mobile Target Based on Set-membership Filtering with Event-trigger Mechanism
下载PDF
导出
摘要 在室内移动定位系统中,由于待定位节点易受统计特性未知的噪声干扰影响,采用Kalman滤波和粒子滤波等经典的噪声抑制方法,已无法有效满足室内定位精度不断提升的要求。针对这一问题,提出了一种基于事件触发的集员滤波室内移动定位算法。首先,针对基于接收信号强度指数(RSSI)测距误差导致传统三边定位算法无法获取可行解的问题,提出了一种椭圆三边定位算法;其次,考虑待定位节点的移动性,为了提高定位精度,提出了一种锚节点自主切换算法;最后,针对噪声统计特性未知的情形,考虑使用带有事件触发机制的集员滤波算法来估计待定位节点位置。通过仿真实验验证了所提方法的有效性。 As the node to be located is vulnerable to noise interference with unknown statistical characteristics in the indoor mobile positioning system,the traditional Kalman filtering,particle filtering and other classical noise suppression methods cannot effectively meet the requirements of indoor positioning accuracy with higher demand.In order to solve this problem,a moving location algorithm based on set-membership filtering with event-trigger mechanism is proposed.Firstly,to address the problem that traditional trilateral location algorithm can't get the feasible solution due to RSSI ranging error,an ellipse trilateral location algorithm is proposed.Secondly,considering the mobility of the node to be positioned,an autonomous switching algorithm for selecting anchor nodes is proposed to improve the positioning accuracy.Finally,a set-membership filtering algorithm with event triggering mechanism is considered to estimate the location of the node in the case that the noise statistical characteristics are unknown.Simulation results show the effectiveness of the proposed method.
作者 王田田 杨波 WANG Tian-tian;YANG Bo(School of Mathematics and Science,Shanxi University,Taiyuan 030006,China)
出处 《导航定位与授时》 CSCD 2021年第2期88-96,共9页 Navigation Positioning and Timing
基金 山西省自然科学基金(201801D221171) 山西省重点研发计划(201903D121145)。
关键词 室内定位 锚节点选择 三边定位 事件触发 集员滤波 Indoor positioning Anchor node selection Trilateration Event-trigger Set-membership filtering
  • 相关文献

参考文献2

二级参考文献38

  • 1Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation. New York: Willey, 2002.200-217.
  • 2Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 3Einicke G A, White L B. Robust extended Kalman filtering. IEEE Transactions on Signal Processing, 1999, 47(9): 2596-2599.
  • 4Di Marco M, Garulli A, Lacroix S, Vicino A. Set membership localization and mapping for autonomous navigation. International Journal of Robust and Nonlinear Control, 2001, 11(7): 709-743.
  • 5Calafiore G. Reliable localization using set-valued nonlinear filters. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2005, 35(2): 189-197.
  • 6Jaulin L. A nonlinear set membership approach for the localization and map building of underwater robots. IEEE Transactions on Robotics, 2009, 25(1): 88-98.
  • 7Yu W, De Jesus Rubio J. Recurrent neural networks training with stable bounding ellipsoid algorithm. IEEE Transactions on Neural Networks, 2009, 20(6): 983-991.
  • 8Fagarasan I, Ploix S, Gentil S. Causal fault detection and isolation based on a set-membership approach. Automatica, 2004, 40(12): 2099-2110.
  • 9Combastel C, Zhang Q H. Robust fault diagnosis based on adaptive estimation and set-membership computations. In: Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical. Beijing, China: IFAC, 2006. 7314-7319.
  • 10Fogel E, Huang Y F. On the value of information in system identification - bounded noise case. Automatica, 1982, 18(2): 229-238.

共引文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部