期刊文献+

输入饱和及输出受限的纯反馈非线性系统控制 被引量:9

Pure Feedback Nonlinear System Control with Input Saturation and Output Constraints
下载PDF
导出
摘要 针对具有输入饱和和输出受限的纯反馈非线性系统,设计了神经网络自适应控制器。首先利用隐函数定理和中值定理将非仿射形式的纯反馈非线性系统转换成有显式输入的非线性系统,基于李雅普诺夫第二方法以及反推法并采用障碍型李雅普诺夫函数进行控制器的设计,最后通过稳定性分析证明了闭环控制系统是半全局一致最终有界的,利用仿真例子验证了控制方案的有效性。 A neural network adaptive controller is designed for pure feedback nonlinear systems with input saturation and output constraints. Firstly, using the implicit function theorem and the mean value theorem, the pure feedback nonlinear system in non-affine form is transformed into a nonlinear system with explicit input. Based on Lyapunov’s second method and backstepping method, the barrier Lyapunov function is used to design the controller. Finally, the stability analysis proves that the closed-loop control system is bounded by the semi-global consistent termination. The effectiveness of the control scheme is verified by the simulation example.
作者 张春蕾 王立东 高闯 陈雪波 ZHANG Chun-lei;WANG Li-dong;GAO Chuang;CHEN Xue-bo(School of Elecronic and Information Engineering,University of Science and Technology Liaoning,Anshan 114051,Liaoning)
出处 《控制工程》 CSCD 北大核心 2021年第3期531-539,共9页 Control Engineering of China
基金 国家自然科学基金项目(71571091,71771112)。
关键词 纯反馈系统 输入饱和 输出受限 神经网络 Pure feedback system input saturation output constraints neural network
  • 相关文献

参考文献11

二级参考文献94

  • 1韩京清.自抗扰控制技术[J].前沿科学,2007,1(1):24-31. 被引量:468
  • 2董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用[J].控制与决策,2006,21(10):1081-1086. 被引量:33
  • 3侯忠生.无模型自适应控制的现状与展望[J].控制理论与应用,2006,23(4):586-592. 被引量:129
  • 4Krstic M, KaneUakopoulos I, Kokotovic E Nonlinear and adaptive control design[M]. New York: Wiley, 1995.
  • 5Ge S S, Hang C C, Lee T H, et al. Stable adaptive neural network control[M]. Norwell: Kluwer Academic, 2001.
  • 6Ge S S, Wang C. Adaptive NN control of uncertain nonlinear pure-feedback systems[J]. Automatica, 2002, 38(4): 671-682.
  • 7Wang D, Huang J. Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form[J]. Automatica, 2002, 38(8): 1365-1372.
  • 8Wang C, Hill D J, Ge S S, et al. An ISS-modular approach for adaptive neural control of pure-feedback systems[J]. Automatica, 2006, 42(5): 723-731.
  • 9Du Hongbin, Shao Huihe, Yao Pingjing. Adaptive neural network control for a clasS of low-triangular-structured nonlinear systems[J]. IEEE Trans on Neural Networks, 2006, 17(2): 509-514.
  • 10Ren B, Ge S S, Lee T H, et al. Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input[C]. Proc of the 47th IEEE Conf on Decision and Control Cancun. Mexico, 2008: 86-91.

共引文献45

同被引文献53

引证文献9

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部