期刊文献+

LR-正则Clifford半环的性质和结构

THE PROPERTY AND STRUCTURE OF LR-NORMAL CLIFFORD SEMIRINGS
下载PDF
导出
摘要 为了完善半环的Clifford层次的研究,基于已有研究结果,利用LR-正则带,定义了LR-正则Clifford半环.一个半环S称为LR-正则Clifford半环,若S是矩形环Sα的分配格D(α∈D),并且E+(S)是一个LR-正则带.这类半环是左(右)Clifford半环的真推广.利用半群的研究方法,借助LR-正则纯正群并半群、矩形Clifford半环和拟Clifford半环的结构,给出了半环是LR-正则Clifford半环的充分必要条件,最后在LR-正则Clifford半群织积结构的前提下,给出了在一定条件下LR-正则Clifford半环的织积结构.所得结果推广了左(右)Clifford半环的相应结论. In order to improve the research of Clifford hierarchy of semirings,based on the existing research results,we define LR-regular Clifford semirings by using LR-regular band.A semiring S is said to be an LR-regular Clifford semiring if S is a distributive lattice of rectanglar ring Sα(α∈D)and E+(S)is an LR-regular band.Such semirings are the proper generalization of left(right)Clifford semirings.By using the research method of semigroups,with the help of the structure of LR-regular orthogroups,rectangular Clifford semirings and quasi Clifford semigroups,the necessary and sufficient conditions for the semirings to be LR-regular Clifford semirings are given,and the spined product structure of LR-regular Clifford semirings under certain conditions is given.The results generalize the conclusions of left(right)Clifford semirings.
作者 唐宝杰 李刚 Tang Baojie;Li Gang(School of Mathematics and Statistics,Shandong Normal University,250358,Jinan,China)
出处 《山东师范大学学报(自然科学版)》 CAS 2021年第1期33-37,共5页 Journal of Shandong Normal University(Natural Science)
基金 国家自然科学基金资助项目(30471138、30370928)。
关键词 带半环 LR-正则纯正群并半群 LR-正则Clifford半环 分配格同余 band semirings LR-regular orthogroups LR-regular Clifford semirings distributive lattice congruence
  • 相关文献

参考文献5

二级参考文献21

  • 1F.Pastijn,郭聿琦.The lattice of idempotent distributive semiring varieties[J].Science China Mathematics,1999,42(8):785-804. 被引量:18
  • 2朱聘瑜,郭聿琦,岑嘉评.STRUCTURE AND CHARACTERISTICS OF LEFT CLIFFORD SEMIGROUPS[J].Science China Mathematics,1992,35(7):791-805. 被引量:6
  • 3郭聿琦,任学明,岑嘉评.左C─半群的又一结构[J].数学进展,1995,24(1):39-43. 被引量:20
  • 4Petrich M. A structure theorem for completely regular semigroups. Proc Amer Math Soc, 1987, 99:617-622.
  • 5Ren X M, Shum K P. On generalized orthogroups. Comm in Algebra, 2001, 29(6): 2341-2361.
  • 6Petrich M, Reilly N R. Completely Regular Semigroups. New York: A Wiley-Interscience Publication,1999.
  • 7Howie J M. An Introduction to Semigroup Theory. London: Academic Press, 1976.
  • 8Howie J M. Fundamentals of Semigroup Theory. London: Oxford University Press, 1995.
  • 9Guo Y Q, Ren X M, Shum K P. Another structure of left C-semigroups. Adv in Math (China), 1995,24(1): 39-43.
  • 10Guo Y Q. Weakly left C-semigroups. Chinese Science Bull, 1996, 46(6): 462-467.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部