期刊文献+

Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation

下载PDF
导出
摘要 The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé expansion is used to find the Schwartz form, the Bäcklund/Levi transformations, and the residual nonlocal symmetry. The residual symmetry is localized to find its finite Bäcklund transformation. The local point symmetries of the model constitute a centerless Kac–Moody–Virasoro algebra. The local point symmetries are used to find the related group-invariant reductions including a new Lax integrable model with a fourth-order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.
作者 Xiao-Bo Wang Man Jia Sen-Yue Lou 王晓波;贾曼;楼森岳(School of Physical Science and Technology,Ningbo University,Ningbo 315211,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期178-184,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.11975131 and 11435005) the K C Wong Magna Fund in Ningbo University。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部