期刊文献+

考虑电价不确定性的负荷价-量曲线聚合方法 被引量:4

Bidding Curve Aggregation Considering Uncertainty of Electricity Price
下载PDF
导出
摘要 随着电力市场的发展,需求侧逐渐参与电力市场报价。报价曲线需要反映需求侧的真实价格响应特征。然而,需求侧的负荷资源具有数量多、单个容量小的性质。大量用户聚合上报的价-量曲线尽量准确地反映需求侧特征,有利于售电侧准确掌握聚合用电特性,维护电力市场经济信号准确性。针对此,提出一种考虑电价不确定性的需求侧用户价-量曲线聚合方法,该方法可有效保留各负荷的价格响应特性,并为大量需求侧用户参与市场出清提供技术支撑。首先,该文考虑电价预测的不确定性,基于后验误差与核密度估计,建立适应多种电价预测模型的电价概率分布生成方法;在此基础上,提出需求侧用户价-量曲线的最优聚合模型,能在预测电价附近展现良好的聚合精度,且适用于不同出清模式的电力市场。针对所提模型具有的分段非线性特性,该文采用启发式算法-粒子群算法求解该模型。最后,基于真实电价数据验证了所提方法的有效性。 With the development of electricity market, demand side will bid in market gradually. However, the demand side resources usually have small capacity and large quantity, integrating a group of users then submit the bidding curve to reflect the demand side characteristics is conducive to grasping the integrated characteristics of users and maintaining economy signal. Therefore, this paper proposed an idea to aggregate bidding curve considering uncertainty of electricity price, which could effectively maintain the price responsiveness of each load, and provide possibility for a large number of price-responsive loads to participate market clearing. In addition, this paper considered the uncertainty of electricity price prediction, established the probability distribution generation method for electricity price based on posterior error and kernel density estimation, which is applicable to various electricity price prediction models. On this basis, the optimal aggregation model of loads’ bidding curve was proposed, which shows better accuracy around the predicted price and is suitable for different clearing modes. The proposed model has piecewise nonlinearity. Therefore, the heuristic algorithm, particle swarm algorithm, is used to find solution. The effectiveness of proposed method is verified based on real electricity price data.
作者 王子石 杨知方 杨燕 余娟 余红欣 张友强 WANG Zishi;YANG Zhifang;YANG Yan;YU Juan;YU Hongxin;ZHANG Youqiang(State Key Laboratory of Power Transmission Equipment&System Security and New Technology(Chongqing University,College of Elecrical Engineering),Shapingba District,Chongqing 400044,China;Electrie Power Research Institute,State Grid Chongqing Electric Power Corporation,Yubei District,Chongqing 401123,China)
出处 《中国电机工程学报》 EI CSCD 北大核心 2021年第1期147-155,共9页 Proceedings of the CSEE
基金 国家电网公司总部科技项目(5100-201999333A-0-0-00)。
关键词 电力市场 价-量曲线聚合 需求侧竞价 电价不确定性 electricity market bidding curve aggregation demand side bidding uncertainty of electricity price
  • 相关文献

参考文献7

二级参考文献80

  • 1姚建刚,唐捷,李西泉,张炳辉.两种可供实用的发电侧电力市场竞价交易模式[J].电力系统自动化,2003,27(24):14-17. 被引量:4
  • 2黎诣远,西方经济学.上.微观经济分析,1999年
  • 3阎平凡,人工神经网络.模型分析与应用,1993年
  • 4潘迪特 S M,时间序列及其系统分析与应用,1988年
  • 5Benini M, Marracci M, Pelacchi P, et al. Day-ahead market price volatility analysis in deregulated electricity markets [A]. Proc. of IEEE PES Summer Meeting [C]. 2002, 3: 1354-1359.
  • 6Ying Li, Peter C Flynn. Power price in deregulated markets [A]. Proc. of IEEE PES General Meeting [C]. Toronto, Canada, 2003; 2: 874-879.
  • 7Bunn D W. Forecasting loads and prices in competitive power markets [J]. Proc. of the IEEE, 2000, 88 (2): 163-169.
  • 8Hong Y Y, Hsiao C Y. Locational marginal price forecasting in deregulated electricity markets using artificial intelligence [J]. IEE Proceedings on Gen. Trans. Distr., 2002, 149(5): 621-626.
  • 9Szkuta B R, Sanabria L A, Dillon T S. Electricity price short-term forecasting using Artificial Neural Networks [J]. IEEE Trans. on Power Systems, 1999, 14(3): 851-857.
  • 10Gao Feng, Guan Xiaohong, Cao Xi-Ren, et al. Forecasting power market clearing price and quantity using a neural network method [A].Proc.of IEEE PES Summer Meeting [C]. 2000, 4: 2183-2188.

共引文献387

同被引文献55

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部