摘要
分析了一类分数阶对称金融非线性系统的复杂度特性,利用有限时间同步理论设计控制器,实现了有限时间同步。根据分数阶系统定义和Adomain分解法对该系统的非线性项进行Adomain分解,结合分解系数定义系统的表达式,将其离散化。基于谱熵复杂度及C0复杂度的基本算法,利用Matlab仿真其复杂度曲线及复杂度图谱。为进一步探究对称金融非线性系统的动力学特性,利用有限时间同步理论设计误差控制器,实现有限时间同步,仿真结果表明该控制器可使系统在极短的时间内实现同步且鲁棒性好。
In this paper, the complexity characteristics of a class of fractional order symmetric financial nonlinear systems are analyzed. According to the definition of fractional order system and Adomain decomposition method, the nonlinear terms of the system are decomposed by Adomain’s method. Based on the basic algorithm of spectral entropy complexity and C0 complexity, the Matlab is used to simulate its complexity curve and complexity spectrum. In order to further explore the dynamic characteristics of symmetric financial nonlinear system, the finite time synchronization theory is used to design the error controller and realize the finite time synchronization. The simulation results show that the controller can realize the synchronization of the system in a very short time with good robustness.
作者
那格思
赵海燕
Na Gesi;Zhao Haiyan(School of Business and Economics,Australian National University Australia,2600-2601,Canberra,Australia;Shanghai University of Engineering Science Shanghai,School of Management,201620,Shanghai,China)
出处
《应用力学学报》
CAS
CSCD
北大核心
2021年第1期418-424,共7页
Chinese Journal of Applied Mechanics
基金
上海市教科委项目(19692103200)。
关键词
分数阶微积分
金融非线性系统
复杂度
有限时间同步
fractional calculus
financial nonlinear system
complexity
finite time synchronization