期刊文献+

基于神经网络的行驶工况智能识别方法研究 被引量:3

Research on Intelligent Identification Method of Driving ConditionBased on Neural Network
下载PDF
导出
摘要 针对目前工况识别率低降低了能量控制策略在实际行驶中的控制效果的问题,提出了神经网络算法优化行驶工况识别的方法。首先,利用降维后的特征值对典型工况进行分类,构建综合行驶工况。其次,建立模糊C均值聚类、概率神经网络、学习向量化神经网络、BP神经网络的工况识别模型并训练。最后对工况智能识别模型进行仿真验证。结果表明,BP神经网络算法识别效果最好,可优选BP神经网络工况识别模型为设计能量管理策略提供基础。 Aiming at the problem that the low identification rate of current driving condition reduces the control effect of energy control strategy in actual driving condition,a neural network algorithm is proposed to optimize the driving condition identification.Firstly,typical working conditions are classified by characteristic value of the dimensionality reduction and the comprehensive driving condition is constructed.Secondly,condition identification models are respectively established and trained which are fuzzy C-means clustering,probabilistic neural network,learning vector quantization neural network and BP neural network.Finally,intelligent identification models are verified by simulation.The results show that the BP neural network algorithm has the best identification effect,and BP neural network condition identification model can be preferentially selected to provide a basis for designing the energy management strategy.
作者 罗婷 刘瑞军 鲁忠 石大排 李世程 刘一鸣 李士鹏 LUO Ting;LIU Ruijun;LU Zhong;SHI Dapai;LI Shicheng;LIU Yiming;LI Shipeng(School of Transportation and Vehicle Engineering,Shandong University of Technology,Zibo 255049,China;Shandong Zibo Zhangdian District Committee Veteran Cadre Bureau,Zibo 255049,China;Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle,Hubei University of Arts and Science,Xiangyang 441053,China)
出处 《拖拉机与农用运输车》 2021年第2期10-15,共6页 Tractor & Farm Transporter
基金 “机电汽车”湖北省优势特色学科群(XKQ2020020)。
关键词 模糊C均值聚类 概率神经网络 学习向量化神经网络 BP神经网络 智能识别 Fuzzy C-means clustering Probabilistic neural network Learning vector quantization neural neural network BP neural network Intelligent recognition
  • 相关文献

参考文献6

二级参考文献33

  • 1Ericsson E.Independent Driving Pattern Factors andTheir Influence on Fuel-use and Exhaust Emission[J].Transportation Research,Part D,2001,6:325-341.
  • 2Koot M,Kessets J T B A,de Jager B,et al.EnergyManagement Strategies for Vehicular Electric PowerSystems[J].IEEE Transactions on Vehicular Tech-nology,2005,54(3):771-782.
  • 3Perez L,Bossio G R,Moitre D,et al.Optimization ofPower Management in an Hybrid Electric VehicleUsing Dynamic Programming[J].Mathematics andComputers in Simulation,2006,73:244-254.
  • 4Oh K,Min Junhong,Chol Donghoon,et al.Optimi-zation of Control Strategy for a Single-shaft Paral-lel Hybrid Electric Vehicle[J].Proc.IMechE,PartD:J.Automobile Engineering,2007,221:555-565.
  • 5Paganelli G,Guerra T M,Santin J J,et al.Simula-tion and Assessment of Power Control Strategies fora Parallel Hybrid Car[J].Proceedings of the Institu-tion of Mechanical Enineers,Part D:Journal of Au-tomobile Engineering,2000,214(7):705-717.
  • 6Kisacikoglu M C,Uzunoglu M,Alam M S.LoadSharing Using Fuzzy Logic Control in a Fuel Cell/Ultracapacitor Hybrid Vehicle[J].InternationalJournal of Hydrogen Energy,2009,34:1497-1507.
  • 7Moreno J,Ortuzar M E,Dixon J W.Energy-man-agement System for a Hybrid Electric Vehicle,Using Ultracapacitors and Neural Networks[J].IEEE Transactions on Industrial Electronics,2006,53(2):614-623.
  • 8Lin Jie,Niemeier D A.Regional Driving Characteris-tics,Regional Driving Cycles[J].Transportation Re-search,Part D,2003,8:325-341.
  • 9Won Jong-seob.Intelligent Energy ManagementAgent for Aparallel Hybrid Vehicle[D].CollegeStation,Texas:Texas A&M University,2003.
  • 10Bianchi D,Roiando L,Serrao L,et al.A Rule-based Strategy for a Series/Parallel Hybrid ElectricVehicle:an Approach Based on Dynamic Program-ming[C]//Proceedings of the ASME 2010Dynam-ic Systems and Control Conference.Cambridge,Massachuetts,USA.2010:DSCC 2010-4233.

共引文献83

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部