期刊文献+

基于改进Faster R-CNN的交通标志检测算法 被引量:7

Traffic sign detection algorithm based on improved Faster R-CNN
下载PDF
导出
摘要 针对大视野交通场景下背景复杂和交通标志目标较小的问题,提出一种改进Faster R-CNN检测网络的算法。首先采用深度残差网络ResNet50作为骨干网络,提取交通标志的特征;然后设计了在两个不同层级特征图上使用合理尺度滑动窗口的策略来生成目标建议区域,增强多尺度交通标志的检测能力;最后在残差块中引入注意力机制模块,强化图像的关键信息,抑制图像的背景信息。在中国交通标志数据集上验证了算法的有效性,取得了98.52%的平均检测精度和每幅图像0.042 s的检测速率。本文算法检测效果明显优于原Faster R-CNN检测方法,更适用于复杂场景下的交通标志检测,鲁棒性较强。 Aiming at the problems of complex background and small traffic sign target in large view traffic scene,an improved Faster R-CNN detection network algorithm is proposed.Firstly,the deep residual network ResNet50 is used as the backbone network to extract the features of traffic signs.Secondly,the strategy of using reasonable scale sliding window on two different level feature maps is designed to generate the target proposal region to enhance the detection ability of multi-scale traffic signs.Finally,the attention mechanism module is introduced into the residual block to strengthen the key information of the image and suppress the image background information.The validity of the algorithm is verified on the Chinese traffic sign dataset,with an average detection accuracy of 98.52%and a detection rate of 0.042 s per image.The detection effect of the improved algorithm is obviously better than the original Faster R-CNN detection method,and is more suitable for traffic sign detection in complex scenes,with strong robustness.
作者 李哲 张慧慧 邓军勇 LI Zhe;ZHANG Hui-hui;DENG Jun-yong(School of Electronic Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《液晶与显示》 CAS CSCD 北大核心 2021年第3期484-492,共9页 Chinese Journal of Liquid Crystals and Displays
基金 国家自然科学基金(No.61602377)。
关键词 交通标志检测 Faster R-CNN 残差网络 目标建议区域 注意力机制 traffic sign detection Faster R-CNN residual network target proposal region attention mechanism
  • 相关文献

参考文献7

二级参考文献37

  • 1李宁,陈彬.数字图像处理在道路交通数据采集中的应用研究[J].武汉大学学报(信息科学版),2006,31(9):773-776. 被引量:5
  • 2Broggi A,Cerri P,Medici P. Real Time Road Signs Recognition[A].Istanbul,Turkey,2007.
  • 3Aoyagi Y;Asakura T.A Study on Traffic Sign Recognition in Scene Image Using Genetic Algorithms and Neural Networks[A]台湾台北,1996.
  • 4Fleyeh H. Traffic Sign Recognition by Fuzzy Sets[A].Netherlands,1994.
  • 5Gil P,Maldonado S,Gómez H. Traffic Sign Shape Classification and Localization Based on the Normalized FFT of the Signature of Blobs and 2D Homographies[J].Signal Processing,2008,(12):2943-2945.
  • 6Dalal N,Triggs B. Histograms of Oriented Gradients for Human Detection[A].San Diego,California,USA,2005.
  • 7Zhang Guangcheng;Huang Xiangsheng;Li S Z.Boosting Local Binary Pattern(LBP)-Based Face Recognition[A]广东广州,2004.
  • 8Yang Jian,Yang Jingyu,Zhong D. Feature Fusion:Parallel Strategy vs Serial Strategy[J].Pattern Recognition,2003,(06):1369-1381.doi:10.1016/S0031-3203(02)00262-5.
  • 9徐迪红,唐炉亮.基于颜色和标志边缘特征的交通标志检测[J].武汉大学学报(信息科学版),2008,33(4):433-436. 被引量:21
  • 10甘玲,朱江,苗东.扩展Haar特征检测人眼的方法[J].电子科技大学学报,2010,39(2):247-250. 被引量:22

共引文献95

同被引文献47

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部