期刊文献+

具有Beddington-DeAngelis发生率和双流行病的随机SIQS流行病模型的动力学研究 被引量:1

Dynamical Analysis of Stochastic SIQS Epidemic Model with the Beddington-DeAngelis Incidence and Double Diseases
下载PDF
导出
摘要 提出了具有Beddington-DeAngelis发生率和双流行病的随机SIQS流行病模型.主要研究了随机系统的阈值并应用伊藤公式确定了两种流行病灭绝及在时间均值意义下持久的条件,得到了不仅强的随机扰动可以促使疾病灭绝,而且弱的随机扰动在一定条件下也可以促使疾病灭绝的结论. A stochastic SIQS epidemic model with the Beddington-DeAngelis incidence and double diseases is proposed and analyzed.The threshold of the stochastic system and determined the conditions which lead to the extinction and permanence in mean of two infectious diseases are explored.It is also received that the two diseases will die out if the white noise disturbance is sufficiently larger or R_(i)^(S)<1 and the white noise disturbance is not large.
作者 吕杰 韦煜明 彭华勤 Lü Jie;Wei Yuming;Peng Huaqin(College of Mathematics and Statistics,Guangxi Normal University,Guilin 541004,China)
出处 《宁夏大学学报(自然科学版)》 CAS 2021年第1期15-23,28,共10页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(11771104) 广西自然科学基金资助项目(2018GXNSFAA294084,2018GXNSFBA281140) 广西研究生教育创新计划资助项目(XYCSZ2019083,JGY2019030)。
关键词 Beddington-DeAngelis发生率 双流行病 灭绝性 持久性 Beddington-DeAngelis incidence double diseases extinction permanence in mean
  • 相关文献

参考文献2

二级参考文献13

  • 1XU R, MA Z. Global stability of a SIR epidemic model with nonlinear incidence rate and time delay [ J ]. Nonlinear Analysis: Real World Applications, 2009,10(5) :3175 - 3189.
  • 2GREENHALGH D. Some results for an SEIR epidemic model with density dependence in the death rate [ J]. Mathematical Medicine and Biology, 1992,9(2) :67 - 106.
  • 3LI X Z, ZHOU L L. Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate[J]. Chaos, Solitons & Fractals, 2009,40(2) :874 - 884.
  • 4MISHRA B K, PANDEY S K. Dynamic model of worms with vertical transmission in computer network[J ]. Applied Mathematics and Computation, 2011,217(21) :8438-8446.
  • 5ZHANG Z, YANG H. Stability and Hopf bifurcation in a delayed SEIRS worm model in computer network[J]. Mathematical Problems m Engineering, 2013, Volume 2013, Article ID 319174, 9 pages.
  • 6LI M Y, GRAEF J R, WANG L, et al. Global dynamics of a SEIR model with varying total population size[J], Mathematical bioscienccs, 1999,160(2) :191 - 213.
  • 7SMITH H L, WANG L, LI M Y. Global dynamics of an SEIR epidemic model with vertical transmission[J]. SIAM Journal on Applied Mathematics, 2001,62 ( 1 ) : 58 - 69.
  • 8QI L, CUI J. The stability of an SEIRS model with nonlinear incidence, vertical transmission and time delay[J]. Applied Mathematics and Computation, 2013,221:360 - 366.
  • 9BAI Z, ZHOU Y. Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate[J]. Nonlinear Analysis: Real World Applications, 2012,13(3) : 1060 - 1068.
  • 10YAN M, XIANG Z, Dynamic behaviors of an SEIR epidemic model in a periodic environment with impulse vaccination[J ]. Discrete Dynamics in Nature and Society, 2014, Volume 2014, Article ID 262535, 9 pages.

共引文献7

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部