摘要
提出了具有Beddington-DeAngelis发生率和双流行病的随机SIQS流行病模型.主要研究了随机系统的阈值并应用伊藤公式确定了两种流行病灭绝及在时间均值意义下持久的条件,得到了不仅强的随机扰动可以促使疾病灭绝,而且弱的随机扰动在一定条件下也可以促使疾病灭绝的结论.
A stochastic SIQS epidemic model with the Beddington-DeAngelis incidence and double diseases is proposed and analyzed.The threshold of the stochastic system and determined the conditions which lead to the extinction and permanence in mean of two infectious diseases are explored.It is also received that the two diseases will die out if the white noise disturbance is sufficiently larger or R_(i)^(S)<1 and the white noise disturbance is not large.
作者
吕杰
韦煜明
彭华勤
Lü Jie;Wei Yuming;Peng Huaqin(College of Mathematics and Statistics,Guangxi Normal University,Guilin 541004,China)
出处
《宁夏大学学报(自然科学版)》
CAS
2021年第1期15-23,28,共10页
Journal of Ningxia University(Natural Science Edition)
基金
国家自然科学基金资助项目(11771104)
广西自然科学基金资助项目(2018GXNSFAA294084,2018GXNSFBA281140)
广西研究生教育创新计划资助项目(XYCSZ2019083,JGY2019030)。