期刊文献+

基于多级交叉局部二值模式的高光谱图像分类 被引量:3

Hyperspectral image classification based on multi-level cross local binary pattern
下载PDF
导出
摘要 高光谱遥感图像的分类一直是比较活跃的研究领域,利用空间纹理特征辅助分类是其中的关键方向之一。针对传统局部二值模式仅考虑中心像元和邻域像元关系,及获得的纹理特征维度过高的问题,提出了利用多级交叉局部二值模式获取空间纹理特征辅助分类的方法。利用局部二值模式算子计算纹理特征时,考虑了邻域像元之间的关系,分别从水平垂直方向和对角方向计算编码值,利用不同尺度窗口生成统计直方图,将其组合获得空间纹理特征。实验表明,此方法能够在合适的维度下获取更有效的纹理特征,在辅助分类过程中进一步提高了分类性能。 The classification of hyperspectral remote sensing images has always been a relatively active research field,and the use of spatial texture features to assist classification is also a key direction.Aiming at the problems that the traditional local binary mode only considers the relationship between the central pixel and the neighboring pixels and the obtained texture feature dimensionality is too high,the method is proposed to obtain spatial texture feature auxiliary classification by using multi-level directional multi-scale local binary mode.When using the local binary mode operator to calculate texture features,the relationship between neighboring pixels is considered,and the coding values is calculated from the horizontal and vertical directions and diagonal directions,and different scale windows are used to generate statistical histograms.Its combination obtains spatial texture characteristics.Experiments show that the method can obtain more effective texture features in appropriate dimensions,and further improve the classification performance in the auxiliary classification process.
作者 王立国 张震 WANG Liguo;ZHANG Zhen(College of Information and Communications Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《黑龙江大学自然科学学报》 CAS 2021年第1期93-99,共7页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(62071084)。
关键词 高光谱图像 纹理特征 局部二值模式 多级交叉 hyperspectral image texture feature local binary mode multi-level crossover
  • 相关文献

参考文献3

二级参考文献34

  • 1Phillips PJ,Grother P,Micheals RJ,Blackburn DM,Tabassi E,Bone JM.Face recognition vendor test 2002 results.Evaluation Report,2003.
  • 2Phillips PJ,Syed HM,Rizvi A,Rauss PJ.The FERET evaluation methodology for face-recognition algorithms.IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(10):1090-1104.
  • 3Brunelli R,Poggio T.Face recognition:features vs.templates.IEEE Trans.on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1053.
  • 4Turk M,Pentland A.Face recognition using eigenfaces.In:Negahdaripour S,et al.,eds.Proc.of the IEEE Conf.on Computer Vision and Pattern Recognition.Maui:IEEE Computer Society Press,1991.586-591.
  • 5Belhumer P,Hespanha P,Kriegman D.Eigenfaecs vs fisherfaces:Recognition using class specific linear projection.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 6Porat M,Zeevi Y.The generalized Gabor scheme of image representation in biological and machine vision.IEEE Trans.on Pattern Analysis and Machine Intelligence,1988,10(4):452-468.
  • 7Wiskott L,Fellous JM,Kruger N,Malsburg C.Face recognition by elastic bunch graph matching.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):775-779.
  • 8Liu CJ,Wechsler H.Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition.IEEE Trans.on Image Processing,2002,11(4):467-476.
  • 9Shan SG.Study on some key issuses in face recognition[Ph.D.Thesis].Beijing:Institute of Computing Technology,the Chinese Academy of Sciences,2004
  • 10Vapnik VN,Write; Zhang XG,Trans.The Nature of Statistical Learning Theory.Beijing:Tsinghua University Press,2000.

共引文献93

同被引文献26

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部