期刊文献+

石墨烯/光波导集成的非对称场效应结构特性研究

Characteristics of graphene/waveguide integrated device with asymmetrical field-effect transistor structure
下载PDF
导出
摘要 基于微纳加工技术制备了具有非对称场效应结构的石墨烯/光波导集成器件,首次实验测试了交换源漏电极前后器件场效应输运特性差异,并与石墨烯场效应管进行对比分析了引入光波导结构对器件输运特性的影响。由石墨烯场效应器件模型对测试结果进行分析,结果表明交换源漏电极前后器件载流子迁移率分别为787.76和394.67 cm^(2)·V^(-1)·s^(-1),表现出明显手性差异。同时与传统石墨烯场效应器件相比,引入光波导结构改变了石墨烯沟道表面残余载流子浓度、沟道形态及掺杂分布。由此产生的电势分布和感应电荷浓度差异在影响器件输运性能的同时表现出了与传统器件相反的输运特点。 A graphene/optical waveguide integrated device with asymmetrical field-effect structure was fabricated by micro-nano processing technology.For the first time,we examined the transport properties of the device before and after the source and drain electrodes were swtiched.Then a graphene field-effect transistor(GFET)was fabricated and tested to investigate the performance differences of the device with and without waveguide.The results indicate that the graphene/waveguide integrated device exhibits opposite transport properties compare to the GFET device.According to the GFET model,the carrier mobility in the graphene/waveguide integrated device reaches 787.76 and 394.67 cm^(2)·V^(-1)·s^(-1) under different electrode connections respectively.Additionally,the introduction of the waveguide changes the residual carrier density,surface appearance,and doping distribution of the graphene channel,which induces the electrical potential and charge concentration differences of the device.
作者 朱相宇 张建寰 谢哲欣 刘万山 ZHU Xiangyu;ZHANG Jianhuan;XIE Zhexin;LIU Wanshan(School of Aerospace Engineering,Xiamen University,Xiamen 361101,Fujian Province,China)
出处 《电子元件与材料》 CAS CSCD 北大核心 2021年第3期244-249,共6页 Electronic Components And Materials
基金 国家自然科学基金(61575165)。
关键词 石墨烯 场效应管 光波导 非对称结构 graphene field-effect transistor waveguide asymmetrical structure
  • 相关文献

参考文献3

二级参考文献12

  • 1CASTRO H,GUINEA F,PERES R,et al.The electronic properties of graphene[J].Rev Mod Phys,2009,81(1):109-162.
  • 2LOVAT G.Equivalent circuit for electromagnetic interaction and transmission through graphene sheets[J].Electromagn Compatibility IEEE Trans,2012,54(1):101-109.
  • 3HSIEH F,PAN P,TANG T,et al.Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate[J].Opt Lett,2006,31(8):1112-1114.
  • 4CHEN T,PADILLA J,CICH J,et al.A metamaterial solid-state terahertz phase modulator[J].Nat Photonics,2009,3(3):148-151.
  • 5VASIB,JAKOVLJEVIM,ISIG,et al.Tunable metamaterials based on split ring resonators and doped graphene[J].App Phys Lett,2013,103(1):011102.
  • 6HANSON W.Dyadic Green's functions for an anisotropic,non-local model of biased graphene[J].IEEE Trans Antenna Propagation,2009,56(3):747-757.
  • 7XU C,JIN Y,YANG L,et al.Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide[J].Opt Express,2012,20(20):22398-22405.
  • 8GAN C H,CHU H S,LI E P.Synthesis of highly confined surface plasmon modes with doped graphene sheets in the mid-infrared and terahertz frequencies[J].Phys Rev B,2012,85(12):125431.
  • 9LU Z,ZHAO W.Nanoscale electro-optic modulators based on graphene-slot waveguides[J].Josa B,2012,29(6):1490-1496.
  • 10DRAGOMAN M,ALDRIGO M,DINESCU A,et al.Towards a terahertz direct receiver based on graphene up to 10 THz[J].J Appl Phys,2014,115(4):044307.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部