摘要
在视频场景下,针对图像帧序列,实现一种基于深度学习的单应性估计算法。传统单应性估计算法主要经过特征点提取和误匹配剔除等步骤,区别于传统算法,运用深度学习算法,使用类似于VGG架构的回归网络,对具有连续性的视频帧序列,进行单应性矩阵估计。
In a video scene,a homography estimation algorithm based on deep learning is implemented for image frame sequence. The traditional homography estimation algorithm mainly goes through the steps of feature point extraction and mismatching elimination. Different from the traditional algorithm,it applies the deep learning algorithm and using the regression network similar to VGG structure to estimate the homography matrix for the video frame sequence with continuity.
作者
郭孟夏
GUO Meng-xia(National Key Lahoratoiy of Fundamental Science on Synthetic Vision,Sichuan University,Chengdu 610065)
出处
《现代计算机》
2021年第6期86-90,共5页
Modern Computer
关键词
单应性矩阵
深度学习
VGG架构
回归网络
Homography Matrix
Deep Learning
VGG Structure
Regression Network