期刊文献+

融合多特征的分段卷积神经网络对象级情感分类方法

Multi-Feature Piecewise Convolution Neural Network for Aspect-Based Sentiment Classification
下载PDF
导出
摘要 对象级情感分类旨在判断句子中特定对象的情感极性类别。在现有基于卷积神经网络的研究中,常在模型的池化层采用最大池化操作提取文本特征作为句子表示,该操作未考虑由对象所划分的上下文,因此无法得到更细粒度的对象上下文特征。针对该问题,该文提出一种融合多特征的分段卷积神经网络(multi-feature piecewise convolution neural network,MP-CNN)模型,根据对象将句子划分为两个部分作为上下文,并在池化层采用分段最大池化操作提取上下文特征。此外,该模型还将有助于情感分类的多个辅助特征融入其中,如词的相对位置、词性以及词在情感词典中的情感得分,并通过卷积操作计算词的注意力得分,有效判断对象的情感极性类别。最后在SemEval 2014数据集和Twitter数据集的实验中,取得了较基于传统机器学习、基于循环神经网络以及基于单一最大池化的卷积神经网络分类模型更好的分类效果。 Aspect-based sentiment classification aims at judging the sentiment polarity of a particular aspect in a sentence.In the existing research on convolution-based neural networks,the maximum pooling operation is often used to extract text features as sentence representation in the pooling layer of the model.This operation does not consider the context divided by the aspect and fails to get finer-grained aspect context features.To solve this problem,this paper proposes a multi-feature piecewise convolution neural network(MP-CNN)model.According to the aspect,the sentence is divided into two parts of context,and in the pooling layer,the maximum pooling operation is used to extract the context features.In addition,this paper also integrates several auxiliary features into the model,such as relative position of words,part of speech and sentiment score of words in sentiment lexicon,and calculates the attention score of words through convolution operation.The experiments of SemEval 2014 and Twitter datasets confirm the best performance among the baselines.
作者 周武 曾碧卿 徐如阳 杨恒 韩旭丽 程良伦 ZHOU Wu;ZENG Biqing;XU Ruyang;YANG Heng;HAN Xuli;CHENG Lianglun(School of Computer Science,South China Normal University,Guangzhou,Guangdong 510631,China;School of Software,South China Normal University,Foshan,Guangdong 528225,China;Guangdong Provincial Key Laboratory of Cyber-Physical System,Guangzhou,Guangdong 510006,China)
出处 《中文信息学报》 CSCD 北大核心 2021年第2期116-124,132,共10页 Journal of Chinese Information Processing
基金 国家自然科学基金(61876067) 广东省普通高校人工智能重点领域专项(2019KZDZX1033) 广东省信息物理融合系统重点实验室建设专项(2020B1212060069)。
关键词 多特征 分段 卷积神经网络 对象级情感分类 multi-feature piecewise convolutional neural network aspect-based sentiment classification
  • 相关文献

参考文献3

二级参考文献33

  • 1林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 2赵积春,王志良,王超.情绪建模与情感虚拟人研究[J].计算机工程,2007,33(1):212-215. 被引量:11
  • 3Pang B. , Lee L. , Vaithyanathan S. Thumbs up?: sentiment classification using machine learning tech- niques [C]//Proceedings of the ACL. 2002: 79-86.
  • 4Xu R. F, Wong K. F, Xia Y. Coarse-Fine opinion min- ing-WIA in NTCIR-7 MOAT task [C]//Proceedings of NTCIR. 2008: 307-313.
  • 5Tan S. , Zhang J. An empirical study of sentiment a- nalysis for Chinese documents [J]. Expert Systems with Applications, 2008, 34(4): 2622-2629.
  • 6Socher R. , Perelygin A. , Wu J. Y. , et al. Recursive deep models for semantic compositionality over a senti- ment Treebank [C]//Proceedings of the EMNLP. 2013: 1631-1642.
  • 7Kim Y. Convolutional neural networks for sentence classification [C]//Proceedings of the EMNLP. 2014: 1746-1751.
  • 8Wang S. , Manning C. D Baselines and bigrams: Sim- ple, good sentiment and topic classification [C]//Pro- ceedings of the ACL. 2012: 90-94.
  • 9Bollegala D., Weir D., Carroll J. Using multiple sources to construct a sentiment sensitive thesaurus for cross-domain sentiment classification [C]//Proceed- ings of the ACL. 2011: 132-141.
  • 10Bengio Y. , Ducharme R. , Vincent P. , et al. A neural probabilistic language model [J]. The Journal of Ma- chine Learning Research, 2003, 3.. 1137-1155.

共引文献276

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部