期刊文献+

基于事件时序关系的自动摘要抽取

Automatic Summary Extraction Based on Event Temporal Relationship
下载PDF
导出
摘要 由于文本中事件之间的时序关系可以帮助人们更好地理解文本内容,故针对新闻报道类文本,将事件作为其基本语义单元,并根据时序关系建立事件有向网络文本表示模型;利用PageRank算法结合主题相关度对时序网络进行节点重要度计算及调整;最后,按照重要度以及事件发生的顺序进行排序,并按照一定的压缩比提取摘要句,删除冗余的句子,将事件对应的原语句作为摘要。实验结果表明,基于事件时序关系的自动摘要方法效果较好。 Since the temporal relationship between events in the text can help people better understand the content of the text, for news report texts, events are used as the basic semantic unit, and a directed network text representation model of events is established according to the temporal relationship. PageRank algorithm combined with topic relevance is used to calculate and adjust node importance of time series network. Finally, the sequence is sorted according to the importance and the sequence of events, and the abstract sentence is extracted according to a certain compression ratio, and the redundant sentence is deleted, and the original sentence corresponding to the event is taken as the summary. The experimental results show that the automatic summarization method based on event sequence relation is effective.
作者 陈红 CHEN Hong(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处 《盐城工学院学报(自然科学版)》 CAS 2021年第1期31-35,共5页 Journal of Yancheng Institute of Technology:Natural Science Edition
关键词 时序关系 时序网络 自动摘要 PAGERANK算法 sequential relation temporal network automatic summary PageRank algorithm
  • 相关文献

参考文献7

二级参考文献53

  • 1耿焕同,蔡庆生,赵鹏,于琨.一种基于词共现图的文档自动摘要研究[J].情报学报,2005,24(6):651-656. 被引量:15
  • 2索红光,刘玉树,曹淑英.一种基于词汇链的关键词抽取方法[J].中文信息学报,2006,20(6):25-30. 被引量:88
  • 3苗守谦,卫志华.中文文本信息处理的原理与应用[M].北京:清华大学出版社,2007:109-150.
  • 4Lin C Y. Training a Selection Function for Extraction[C]//Pro- ceeding of the Eighteenth Annual International ACM Confer- ence on Information and Knowledge Management (CIKM). 1999:55-62.
  • 5Jiang Chang-jin, Peng Hong, Ma Qian-li, et al. Automatic Sum- marization for Chinese Text Based on Combined Words Recogni- tion and Paragraph Clustering[C]//Proceedings of the 2010 Third International Symposium on Intelligent Information Tech- nology and Security Informatics(IITSI' 10). 2010:591-594.
  • 6Z Pei-ying, L Cun-he. Automatic text summarization based on sentences clustering and extraction[C]//Proceedings of the 2009 2nd International Conference on Computer Science and In- formation Technology (ICCSIT 2009). 2009:167-170.
  • 7Chandra M, Gupta V,Paul S K. A Statistical approach for Auto- matic Text Summarization by Extraction[C]//2011 Internation- al Conference on Communication Systems and Network Tech- nologies(CSNT 2011). 2011 : 268-271.
  • 8Erkan G, Radev D R. LexRank: Graph-based lexical centrality as salience in text summarization[J]. Journal of Artificial Intelli- gence Research, 2004(22) : 457-479.
  • 9Zwaan R A, Radvansky G A. Situation models in language com- prehension and memory[J]. Psychological bulletin, 1998, 123 (2) : 162-185.
  • 10ACE (Automatic Contente Extraction) Chinese Annotation Guidelines for Events[R]. National Institute of Standards and Technology, 2005.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部