期刊文献+

具有不定位势和凹非线性项的Robin问题的解的多重性

Multiple Solutions for Robin Problem with Indefinite Potential and Concave Nonlinearities
下载PDF
导出
摘要 研究非线性项由凹项λ|u|^(q−2)(其中1<q<2)和在无穷远处以超线性或渐近线性增长的连续项f(x,u)组成的半线性不定位势的Robin问题,在不同情形下,运用变分法、截断技巧和Morse理论,得到了该问题的多重解的存在性结果. We investigate semilinear Robin problem with indefinite potential and right-hand-side nonlinearity which is exhibits-sublinear term of the form λ|u|q-2, 1 < q < 2(concave term), and a continuous term f(x, u) which is superlinear or asymptotically linear at infinity respectively. Under some different conditions, we establish some existence results of multiple solutions by using variational methods and truncation techniques combined with the Morse theory.
作者 夏鸿鸣 裴瑞昌 张吉慧 XIA Hongming;PEI Ruichang;ZHANG Jihui(School of Mathematics and Statistics,Tianshui Normal University,Tianshui 741001,China;School of Mathematics Sciences,Nanjing Normal University,Nanjing 210097,China)
出处 《应用数学》 CSCD 北大核心 2021年第2期323-336,共14页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11661070,11764035,11571176)。
关键词 ROBIN问题 MORSE理论 不定位势 凹非线性项 解的存在性及多重性 Robin problem Morse theory Indefinite potential Concave nonlinearity Existence and multiplicity of solution
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部