期刊文献+

一类时滞分数阶计算机病毒模型的稳定性研究

Stability Research of a Fractional-Order Delay Computer Virus Model
下载PDF
导出
摘要 本文研究一类改进的时滞分数阶计算机病毒模型正平衡点的稳定性问题.利用线性化方法和拉普拉斯变换获得模型对应的线性化系统的特征方程,通过讨论特征方程的根以及横截条件研究时滞和正平衡点稳定性之间的关系,推导了Hopf分支出现时时滞临界值的计算公式,并选择恰当的系统参数进行数值模拟以验证理论分析的合理性. Stability of positive equilibrium point of a modified fractional-order delay computer virus model is studied in this paper.Firstly,characteristic equation of the model is obtained by using linearization method and Laplace transformation,then we theoretically explore the relationship between the delay and stability of equilibrium point basing on analysis of roots of characteristic equation and transversality condition,critical value of delay for the energence of Hopf bifurcation is achieved.Moreover,numerical simulations are made to verify the validity of the theoretical results.
作者 石剑平 阮丽媛 SHI Jianping;RUAN Liyuan(Department of System Science and Applied Mathematics,Kunming University of Science and Technology,Kunming 650500,China)
出处 《应用数学》 CSCD 北大核心 2021年第2期419-426,共8页 Mathematica Applicata
基金 国家自然科学基金资助项目(11561034,11761040) 云南省教育厅科学研究基金(2017ZZX133)。
关键词 计算机病毒模型 平衡点 稳定性 HOPF分支 Computer virus model Equilibrium point Stability Hopf bifurcation
  • 相关文献

参考文献3

二级参考文献53

  • 1http://bmi.osu.edu/esaule/public- website/slides/saule13-umassboston.pdf.
  • 2Guan W, Gao H, Yang M, Li Y, Ma H, Qian W, Cao Z, Yang X .2014, Physica A: Statistical Mechanics and its Applications 395 340.
  • 3张彦超,刘云,张海峰,程辉,熊菲.2011,物理学报,60050501.
  • 4Zhao L, Guan X H, Yuan R X .2012, Knowledge and In- formation Systems 31 371.
  • 5Leskovec J, McGlohon M, Faloutsos C, Glance N, Hurst M .2007, International Conference on Data Mining, Pro- ceedings of the 7th SIAM International Conferenceon Data Mining Minneapolis, Minnesota, USA, April 26-28, .2007, p551.
  • 6Xu R Z, Li H L, Xing C M .2013, Int. J. Comput. Sci. Appl. 1 1.
  • 7May R M, Lloyd A L .2001, Phys. Rev. E 64 066112.
  • 8Moreno Y, Pastor Satorras R, Vespignani A .2002, Europ. Phys. J. B 26 521.
  • 9Yang R, Wang B H, Ren J, Bai W J, Shi Z W, Wang W X, Zhou T .2007, Phys. Lett. A 364 189.
  • 10Wang J, Zhao L, Huang R .2014, Physica A: Statistical Mechanics and its Applications 398 43.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部