摘要
研究一类四阶偏微分多智能体系统的一致性控制问题,该类系统中的每个智能体是由四阶偏微分方程构建而成.针对系统的特点,通过构建合适空间上的Lyapunov泛函,得到分布式反馈控制律.当该反馈控制律作用于系统时,系统状态变量的一致性误差于L^(2)(0;l)×L^(2)(0;l)空间内收敛到零.最后,通过仿真算例验证了方法的有效性.
In this paper,the consensus control problem for a class of four order partial differential multi-agent systems is studied,and each agent in the systems is constructed by a four order partial differential equation.According to the characteristics of the systems,the distributed feedback control law is obtained by constructing a Lyapunov functional on an appropriate space.When the feedback control law is applied to the systems,the consensus error of the state variable converges to zero on L^(2)(0;l)×L^(2)(0;l)space.Finally,the effectiveness of the method is verified by a simulation example.
作者
陈振杰
傅勤
郁鹏飞
张丹
CHEN Zhenjie;FU Qin;YU Pengfei;ZHANG Dan(School of Mathematics Sciences,Suzhou University of Science and Technology,Suzhou 215009,China)
出处
《应用数学》
CSCD
北大核心
2021年第2期448-456,共9页
Mathematica Applicata
基金
国家自然科学基金(11971343)。
关键词
偏微分多智能体系统
四阶偏微分方程
LYAPUNOV泛函
一致性控制
Partial differential multi-agent system
Fourth order partial differential equation
Lyapunov functional
Consensus control