期刊文献+

非强制混合向量变分不等式解的存在性研究

Existence Results of Solutions for Noncoercive Mixed Vector Variational Inequalities
下载PDF
导出
摘要 本文利用例外簇方法研究非强制混合向量变分不等式的弱有效解的存在性:首先证明若混合向量变分不等式问题不存在例外簇,则混合向量变分不等式问题的弱有效解集为非空集合:利用向量值映射的渐近映射给出自反Banach空间中非强制混合向量变分不等式的弱有效解集不存在例外簇的充分条件,从而得到混合向量变分不等式问题的弱有效解的存在性结果;我们研究了当算子为余正仿射算子时,给出混合仿射向量变分不等式不存在例外簇的充分条件,得到混合仿射向量变分不等式弱有效解的存在性,给出了混合仿射向量变分不等式的弱有效解集为非空紧致集的充分条件.将Iusem等人(2019)在有限维空间中标量混合变分不等式解的存在性结果推广到自反Banach空间中混合向量变分不等式. By employing the notion of exceptional family of elements,we establish some existence results for weakly efficient solutions for mixed vector variational inequality problems.We show that the nonexistence of an exceptional family of elements is a necessary condition for the solvability of mixed vector variational inequality problems.By using the asymptotic mappings of vector-valued mappings,we present a sufficient condition for the nonexistence of an exceptional family of elements for mixed vector variational inequality problems in reflexive Banach spaces,and obtain some existence results for weakly efficient solutions for mixed vector variational inequality problems.When the operator is affine and copositive,we present a sufficient condition for the nonexistence of an exceptional family of elements for mixed affine vector variational inequality problems,establish some existence results for weakly efficient solutions of mixed affine vector variational inequality problems,and provide some sufficient conditions for solution sets of mixed affine vector variational inequality problems to be nonempty and compact.The existence results of solutions for scalar mixed variational inequality problems in finite dimensional spaces established by Iusem et al.(2019),are generalized to mixed vector variational inequality problems in reflexive Banach spaces.
作者 许可 范江华 XU Ke;FAN Jianghua(College of Mathematics and Statistics,Guangxi Normal University,Guilin 541006,China)
出处 《应用数学》 CSCD 北大核心 2021年第2期506-514,共9页 Mathematica Applicata
基金 国家自然科学基金(71561004) 广西研究生教育创新计划项目(XYCSZ2020062)。
关键词 混合向量变分不等式 弱有效解 例外簇 仿射算子 渐近映射 Mixed vector variational inequality Weakly efficient solution Exceptional family of element Affine operator Asymptotic mapping
  • 相关文献

参考文献2

二级参考文献11

  • 1Yi Ran HE Xiu Zhen MAO Mi ZHOU.Strict Feasibility of Variational Inequalities in Reflexive Banach Spaces[J].Acta Mathematica Sinica,English Series,2007,23(3):563-570. 被引量:3
  • 2Y. B. Zhao,J. Y. Han,H. D. Qi. Exceptional Families and Existence Theorems for Variational Inequality Problems[J] 1999,Journal of Optimization Theory and Applications(2):475~495
  • 3Y.B. Zhao,J. Han. Exceptional Family of Elements for a Variational Inequality Problem and its Applications[J] 1999,Journal of Global Optimization(3):313~330
  • 4G. Isac,W. T. Obuchowska. Functions Without Exceptional Family of Elements and Complementarity Problems[J] 1998,Journal of Optimization Theory and Applications(1):147~163
  • 5G. Isac,V. Bulavski,V. Kalashnikov. Exceptional Families, Topological Degree and Complementarity Problems[J] 1997,Journal of Global Optimization(2):207~225
  • 6Patrick T. Harker,Jong-Shi Pang. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications[J] 1990,Mathematical Programming(1-3):161~220
  • 7Masakazu Kojima. A unification of the existence theorems of the nonlinear complementarity problem[J] 1975,Mathematical Programming(1):257~277
  • 8Jorge J. Moré. Classes of functions and feasibility conditions in nonlinear complementarity problems[J] 1974,Mathematical Programming(1):327~338
  • 9B. C. Eaves. On the basic theorem of complementarity[J] 1971,Mathematical Programming(1):68~75
  • 10S. Karamardian. Generalized complementarity problem[J] 1971,Journal of Optimization Theory and Applications(3):161~168

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部