摘要
三维扫描设备获得的点云数据不可避免地存在噪声,为去除不同尺度的噪声、较好地恢复出点云数据并保持模型的几何特征,采用了一种基于噪声尺度变化的点云并行去噪方法。该方法对于大尺度噪声,采用半径滤波与改进的具有噪声基于密度的聚类(density-based spatial clustering of applications with noise,DBSCAN)算法去除;对于小尺度噪声,采用改进的双边滤波算法滤除,去噪后能使模型特征不被破坏。并且,采用八叉树并行化提高双边滤波的速度,对比传统双边滤波,去噪效果更好且去噪速度提高至120%。
Noise inevitably exists in point cloud data acquired by three-dimensional scanning equipment.In order to remove noise at different scales,recover point cloud data better and maintain geometric characteristics of the model,a point cloud parallel de-noising method based on scale variation of noise is adopted.For large scale noise,the radius filtering and the improved density-based spatial clustering of applications with noise(DBSCAN)algorithm are used to remove it;for small scale noise,the improved bilateral filtering algorithm is used to remove it,so that the model features are not destroyed after de-noising.Octree parallelization is used to improve the speed of bilateral filtering.Compared with the traditional bilateral filtering,the de-noising effect is better and the de-noising speed is increased to 120%.
作者
焦亚男
马杰
钟斌斌
JIAO Yanan;MA Jie;ZHONG Binbin(School of Electronics and Information Engineering,Hebei University of Technology,Tianjin 300401,China)
出处
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2021年第3期277-282,共6页
Engineering Journal of Wuhan University
基金
天津市科技特派员项目(编号:18JCTPJC54300)
天津市教委科研计划项目(编号:2018KJ268)。
关键词
点云去噪
半径滤波
DBSCAN聚类
双边滤波
并行化
point cloud de-noising
radius filtering
density-based spatial clustering of applications with noise clustering
bilateral filtering
parallelization