期刊文献+

Class2 CRISPR-Cas系统发掘及分析方法 被引量:1

Methods for Discovery and Analysis of Class2 CRISPR-Cas Systems
下载PDF
导出
摘要 近年来,规律间隔成簇短回文系统(CRISPR-Cas)作为基因编辑手段在动植物基因编辑中已广泛应用。现已被证实的Class2类CRISPR-Cas系统CRISPR-Cas12、CRISPR-Cas14等均通过生物信息学手段被发掘出来,因此,生物信息学成为发现新CRISPR-Cas系统及其子类型的重要方法。笔者综述了Cas酶两类生物信息学发掘手段,一类方法是通过已知Cas酶建立隐马尔科夫模型(HMM)预测可能的同类Cas酶;另一类方法是以标志序列Cas1或CRISPR识别为基础分析上下游可能的Cas酶,同时讨论了两种方法的限制。在此基础上,综述了Cas蛋白和CRISPR序列进一步分析方法,包括Cas蛋白同源性、进化分析及CRISPR序列间隔序列(spacers)、前间隔序列(protospacers)前间隔序列临近基序(PAM)分析。 Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR-Cas)has been widely used as a tool in recent years for gene editing in animal and plant gene editing.The proven Class2 CRISPR-Cas systems,such as CRISPR-Cas12 and CRISPR-Cas14,have been discovered through bioinformatics mining.Bioinformatics has become an important tool for discovering of new CRISPR-Cas systems and their subtypes.Two methods for bioinformatics mining of Cas enzymes are reviewed.One method is to create a hidden Markov model(HMM)using known Cas enzymes to predict similar Cas enzymes,and the other method is to analyze the possible upstream and downstream Cas enzymesbased on the recognition of the marker sequence Cas1 or CRISPR.The limitations of these two methods are discussed.Furthermore,methods for further analysis of Cas protein and CRISPR sequences are also reviewed,including Cas protein homology,phylogenetic analysis,and analysis of CRISPR sequence spacers,protospacers&protospacer adjacent motifs(PAM).
作者 朱晓菲 黄娇媚 原昊 万逸 ZHU Xiaofei;HUANG Jiaomei;YUAN Hao;WAN Yi(Marine College/State Laboratory of Marine Utilization in South China Sea,Hainan University,Haikou,Hainan 570228;College of Information and Communication Engineering,Hainan University,Haikou,Hainan 570228;Institute of Oceanology/Shandong Key Laboratory of Corrosion Science,Chinese Academy of Sciences,Qingdao,Shandong 266071)
出处 《热带生物学报》 2021年第1期115-123,共9页 Journal of Tropical Biology
基金 山东省腐蚀科学重点实验室开放课题资助项目(HD-KFKT-2019019)。
关键词 Cas酶发掘 CRISPR-Cas系统 生物信息学分析 mining of Cas enzyme CRISPR-Cas system bioinformatics analysis
  • 相关文献

参考文献2

二级参考文献22

  • 1[1]LAWRENCE R A.Tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-286.
  • 2[2]CHURCHILL G A.Stochastic models for heterogeneous DNA sequences[J]. Bulletin of Mathematical Biology, 1989,51:79-94.
  • 3[3]DURBIN S R.Biological sequence analysis: Probalistic models of proteins and nucleic acids[M]. Cambridge :Cambridge University Press, 1998.121-138.
  • 4[4]EDDY S R.Hidden markov models[J]. Current Opinion in Structurel Biology, 1996, 6:361-365.
  • 5[5]EDDY S R. Profile hidden markov models[J]. Bioinformatics, 1998,14:755-763.
  • 6[6]KROGH M. Hidden Markov models in computational biology: Applications to protein modeling[J].J Mol Biol,1994, 235:1501-1531.
  • 7[7]STEVEN S. In Computational Methods in Molecular Biology[M]. Holand: Elsevier Science, 1998.45-63.
  • 8[8]GRIBSKOV M. Profile analysis: Detection of distantly related proteins[J]. PNAS, 1987, 84: 4355-4358.
  • 9[9]LUTHY R. Assessment of protein models with three-dimensional profiles[J]. Nature, 1992, 356:83-85.
  • 10[10]TAYLOR W R.Identification of protein sequence homology by consensus template alignment[J]. Journal of Molecular Biology, 1986,188:233-258.

共引文献19

同被引文献44

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部