期刊文献+

基于第一性原理的掺杂单层WS 2的光电效应

Photogalvanic Effect of Doped Monolayer WS_(2) Based on First-Principles
下载PDF
导出
摘要 基于非平衡态格林函数-密度泛函理论,采用第一性原理方法,计算了VA族元素(N、P、As或Sb)掺杂单层WS 2的光电效应,并解释了掺杂提高光电效应的微观机理。结果表明:在线性极化光照射下,单层WS 2中可以产生光电流。由于掺杂降低了单层WS 2的空间反演对称性,导致N、P、As或Sb分别掺杂的单层WS 2的光照中心区产生的光电流明显提升。其中N掺杂的效果最好,掺杂后的单层WS 2在光子能量3.1 eV时获得最大光电流(1.75),并且偏振灵敏度达到最大(18.1),P、As、Sb分别掺杂的单层WS 2在光子能量3.9 eV时取得较大的光电流,并且有较高的偏振灵敏度。研究结果表明通过掺杂能够有效增强光电效应,获得更高的偏振灵敏度,揭示了掺杂单层WS 2在光电子器件领域潜在的应用前景。 Based on the non-equilibrium Green function-density functional theory,the photoelectric effect of doped monolayer WS 2 with VA group elements(N,P,As or Sb)was calculated by first-principles,and the microcosmic mechanism of doping to improve the photogalvanic effect was explained.The results show that photocurrent can be generated in the monolayer WS 2 under linearly polarized light.Since the doping reduces the spatial inversion symmetry of the monolayer WS 2,the photocurrent generated by the illuminated central area of the monolayer WS 2 doped with N,P,As,or Sb significantly increases,and the photocurrent and the polarization angle show a perfect sinusoidal relationship,which conforms to the phenomenological theory.Among them,the effect of N doping is the best.The doped monolayer WS 2 obtains the maximum photocurrent(1.75)when the photon energy is 3.1 eV,and the polarization sensitivity reaches the maximum(18.1).The monolayer WS 2 doped with P,As and Sb achieves a larger photocurrent when the photon energy is 3.9 eV,and has a higher polarization sensitivity.The research results show that the doping can effectively enhance the photogalvanic effect and obtain higher polarization sensitivity,revealing the potential application prospects of doped monolayer.
作者 袁秋明 陈妍 徐中辉 罗兵 陈圳 YUAN Qiuming;CHEN Yan;XU Zhonghui;LUO Bing;CHEN Zhen(School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China;School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《人工晶体学报》 CAS 北大核心 2021年第3期497-503,共7页 Journal of Synthetic Crystals
基金 国家自然科学基金(11864014) 国家重点研发计划重点专项(2020YFB1713705) 江西理工大学“清江青年英才支持计划”优秀人才计划(3203304666) 赣州市科技创新人才计划(赣市科发[2019]60-43)。
关键词 第一性原理 掺杂 WS 2 光电效应 偏振灵敏度 空间反演对称性 first-principle doping WS 2 photogalvanic effect polarization sensitivity spatial inversion symmetry
  • 相关文献

参考文献2

二级参考文献34

  • 1NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666-669.
  • 2GEIM A K. Graphene: status and prospects [J]. Science, 2009, 324: 153(1534.
  • 3GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nat Mater, 2007, 6: 183-191.
  • 4RACCICHINI R, VARZ1 A, PASSER1NI S, et aL The role ofgraphene for eleclrocbemical energy storage [J]. Nat Mater, 2015, 14: 271--279.
  • 5BONACCORSO F, SUN Z, HASAN T, et al. Graphene photonics and optoelectronics [J]. Nat Photon, 2010, 4:61122.
  • 6ATACA C, SAHIN H, CIRACI S. Stable, single-layer MX. transition-metal oxides and dichalcogenides in a honeycomb-like structure [J]. J Phys Chem C, 2012, 116:8983 8999.
  • 7GONG J. Structure and surface chemistry of gold-based model catalysts [J]. Chem Rev, 2012, 112: 2987-3054.
  • 8YIN M Y, WANG X C, MI W B, et al. First principles prediction on the interfaces of Fe/MoSz, Co/MoS2and FesO4/MoS2 [J]. Comput Mater Sci 2015, 99: 326-335.
  • 9XU M, LIANG T, SHI M, et al. Graphene-like two-dimensional materials [J]. Chem Rev, 2013, 113: 3766-3798.
  • 10LI T, GALLI G L. Electronic properties of MoS2 nanoparticles [J]. J Phys Chem C, 2007, 111(44): 16192 16196.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部