期刊文献+

商业建筑电气负荷密度调查与分析 被引量:3

Investigation and analysis on electrical load density of commercial buildings
下载PDF
导出
摘要 针对目前商业建筑各类负荷的功率密度资料欠缺,通过调研国内大型商业建筑各类负荷的数据,并利用统计学分析得到了动力系统、空调系统以及照明系统负荷的功率密度的选取范围建议值和各类负荷所占比例的推荐值,并且将总建筑面积与各类负荷进行了相关性分析。结果表明总安装容量和总计算有功功率与建筑面积的相关性较强,且呈现显著的线性相关关系,这将为商业建筑电气方案设计提供参考。 In view of the lack of power density data of all kinds of loads in commercial buildings,the data of all kinds of loads in large-scale commercial buildings in China is investigated,and statistical analysis are used to obtain the recommended value of the selection range of power density of power,air conditioning and lighting loads and the recommended value of the proportion of all kinds of loads,and a correlation analysis between the total building area and all kinds of loads is made.The results show that the total installed capacity and the total calculated active power have a strong correlation with the building area and show a significant linear correlation,which will provide a reference for the electrical design of commercial buildings.
作者 常昊 李炳华 王成 朱心月 岳云涛 CHANG Hao;LI Binghua;WANG Cheng;ZHU Xinyue;YUE Yuntao(Beijing University of Civil Engineering and Architecture,Beijing 100044,China;CCDI Group(Beijing),Beijing 100013,China)
出处 《电气应用》 2021年第3期83-88,共6页 Electrotechnical Application
关键词 民用建筑 负荷分布 相关性分析 区间估计 civil building load distribution correlation analysis interval estimation
  • 相关文献

参考文献2

二级参考文献22

  • 1FEINBERG E A, GENETHLIOU D. Load forecasting [ A1. In: Applied Mathematics for Restructured Elec- tric Power Systems: Optimization, Control, and Com- putational Intelligence ,2005.
  • 2LI S, ZHANG D, ROGET A B, et al. Integrating home energy simulation and dynamic electricity price for demand response study[ J]. IEEE Transactions on Smart Grid ,2014,5(5) :779 -788.
  • 3CHEN H, CANIZARES C A, SINGH A. ANN-based short-term load forecasting in electricity markets [ C ]// In Proc IEEE Power Engineering Society Winter Meet- ing, 2001.
  • 4FAY D, RINGWOOD J V. On the influence of weath- er forecast errors in short-term load forecasting models [J]. IEEE Trans Power System, 2010,25:1751 - 1758.
  • 5KARIMI T, SADEGHIMOGHADAM M R, SHAK- OURI H G. Investigation of temperature variation effects on natural gas consumption in Iran [ C ]//In: Power and Energy Engineering Conference (AP- PEEC ), 2011.
  • 6SIMUNEK M, PELIKtN E. Temperatures data prepro- cessing for short-term gas consumption forecast [ C 1// In: Industrial Electronics, ISlE 2008.
  • 7FAGIANI M, SQUARTINI S, BONFIGLI R, et al. Short-term load forecasting for smart water and gas grids: A comparative evaluation: A comparative evalu- ation[ C]//In: IEEE 15th International Conference on Environment and Electrical Engineering ( EEEIC ) , 2015.
  • 8DOUGLAS A P, BREIPOHL A M, LEE F N, et al. The impacts of temperature forecast uncertainty on Bayesian load forecasting [ J]. IEEE Transactions on Power Systems, 1998,13 (4) : 1507 - 1513.
  • 9SONG K B, HA S K, PARK JW, etal. Hybrid load forecasting method with analysis of temperature sensi- tivities [ J ]. IEEE Transactions on Power Systems, 2006,21 (2) :869 - 876.
  • 10HIPPERT H S, PEDREIRA C E. Estimating temper- ature profiles for short-term load forecasting: neural networks compared to linear models [ J]. IEE Pro- ceedings on Generation, Transmission and Distribu- tion, 2004,151(4) :543 -547.

共引文献7

同被引文献10

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部