摘要
In the present computational study,we found that Er:Lu_(2)O_(3)materials have promise for application in laser applications.The crystal structure and the electronic and optical properties of Er:Lu_(2)O_(3)materials were studied using first-principle calculations under the framework of density functional theory.Based on the experimental and calculated results,the structure of Lu_(2)O_(3)was established.The calculated results show that doping by Er^(3+)can effectively improve its absorption coefficient in the ultraviolet region and improve the static dielectric constant of Lu_(2)O_(3).As the doping concentration of Er^(3+)increases,the energy of the valence band electrons excited to the conduction band decreases,and the transition is more likely to occur.The absorption coefficient,reflectance,and electron energy loss spectroscopy are bathochromic shifted.The Lu_(2-x)Er_(x)O_(3)(0<x<0.09375)system still retains a low absorption coefficient reflectance in the mid-infrared and visible regions.Our calculations therefore show that rare earth doping can effectively regulate the electronic structure and optical properties of Lu_(2)O_(3).
基金
Project support by the National Natural Science Foundation of China(51372203.51332004,51571166).