期刊文献+

发动机进气声衬结构参数对声激励响应的影响研究 被引量:1

Study on the Influence of Structural Parameters of Engine Inlet Acoustic Lineron the Response of Acoustic Excitation
下载PDF
导出
摘要 针对发动机进气声衬在声载荷作用下的结构设计选型需求,依次对简化的声衬有限元模型进行静力分析、模态分析和声激励分析,计算出声衬的应力分布,并通过改变声衬结构参数,研究腔深、面板厚度、孔径、蜂窝边长4种结构参数对全尺寸声衬在声激励下响应的影响规律。仿真结果表明,腔深改变引起的声衬总质量每增加1kg,声载应力减小0.484MPa;面板厚度改变引起的声衬总质量每增加1kg,声载应力减小0.105MPa;孔径和蜂窝边长对声衬质量和声载应力的影响很小。在声衬结构选型时,为了使总质量和声载应力尽量小,优先方法是增加声衬腔深,其次是增加面板厚度。 According to the structural design and type selection requirements of the engine intake acoustic liner under the acoustic load,the static analysis,modal analysis and acoustic excitation analysis of the simplified finite element model of the acoustic liner are carried out,and the stress distribution of the acoustic liner is calculated.By changing the structural parameters of acoustic liner,the influence of cavity depth,panel thickness,aperture and honeycomb side length on the response of full-scale acoustic liner under acoustic excitation is studied.The simulation results show that the acoustic stress decreases by 0.484MPa for every 1kg increase of the total mass of the acoustic liner caused by the change of the cavity depth.The acoustic stress decreases by 0.105MPa for every 1kg increase of the total mass of the acoustic liner caused by the change of the panel thickness.The influence of the pore diameter and honeycomb side length on the acoustic lining quality and acoustic stress is very small.In order to make the total mass and acoustic stress as small as possible,the first method is to increase the depth of acoustic liner cavity,and the second is to increase the thickness of panel.
作者 杭超 王晨 薛东文 徐健 Hang Chao;Wang Chen;Xue Dongwen;Xu Jian(AVIC Aircraft Strength Research Institute,Xi’an 710065,China)
出处 《航空科学技术》 2021年第2期44-49,共6页 Aeronautical Science & Technology
关键词 短舱声衬 声激励 模态 结构参数 有限元分析 naclle acoustic liner acoustic excitation modal structural parameters finite element analysis
  • 相关文献

参考文献7

二级参考文献83

  • 1王展光,单建,何德坪.金字塔栅格夹心夹层板动力响应分析[J].力学季刊,2006,27(4):707-713. 被引量:13
  • 2Benzakein M J. Propulsion strategy for 21 st century-a vision into the future[R]. ISABE 2001-1005.
  • 3Bridges J, Envia E, Huff D. Recent developments in U.S. engine noise reduction research[R]. ISABE 2001- 1017.
  • 4Crow D E. A comprehensive approach to engine noise reduction technology[R]. ISABE 2001-1011.
  • 5Loheac, P. CFM56 jet noise reduction with the chevron nozzle[R] AIAA2004-3044.
  • 6Bartlett P. The joint Rolls- Royce/Boeing quiet technology demonstrator program[R]. AIAA 2004- 2869.
  • 7Booher M E, Kwon O, Barta A B, et al. Development of an advanced exhaust mixer for a high bypass ratio turbofan engine[R]. AIAA 93-2435.
  • 8Papamoschou D, Shupe R S. Effect of nozzle geometry on jet noise reduction using fan flow deflectors[R]. AIAA 2006-2707.
  • 9Kaplan B, Nicke E, Voss C. Design of a highly efficient low noise fan for ultra-high bypass engines[R]. ASME GT 2006-90363.
  • 10Peter B, Nick H, Pam P, et al. The joint Rolls-Royce Boeing quiet technology[R]. AIAA 2004-2869.

共引文献58

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部