期刊文献+

Rational double points on Enriques surfaces

原文传递
导出
摘要 We classify,up to some lattice-theoretic equivalence,all possible configurations of rational double points that can appear on a surface whose minimal resolution is a complex Enriques surface.
出处 《Science China Mathematics》 SCIE CSCD 2021年第4期665-690,共26页 中国科学:数学(英文版)
  • 相关文献

参考文献1

二级参考文献17

  • 1Artin M. Some numerical criteria for contractibility of curves on algebraic surfaces. Amer J Math, 1962, 84:485-496.
  • 2Barth W, Hulek K, Peters C, et al. Compact Complex Surfaces, 2nd ed. New York: Springer-Verlag, 2004.
  • 3Belousov G N. Del Pezzo surfaces with log terminal singularities. Math Notes, 2008, 83:152-161.
  • 4Frapporti D. Mixed quasi-tale surfaces, new surfaces of general type with pg 0 and their fundamental group. Collect Math, 2013, 64:293 311.
  • 5Frushima M. Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex atone space C3. Nagoya Math J, 1986, 104:1-28.
  • 6Hwang D, Keum J. The maximum number of singular points on rational homology projective planes. J Algebraic Geom, 2010, 20:495-523.
  • 7Hwang D, Park J. Redundant blow-ups and Cox rings of rational surfaces. Trans Amer Math Soc, in press.
  • 8Keum J. Quotients of fake projective planes. Geom Topol, 2008, 12:2497-2515.
  • 9Keum J. The moduli space of Q-homology projective planes with 5 quotient singular points. Acta Math Vietnamica, 2010, 35:79-89.
  • 10Kondo S. Enriques surfaces with finite automorphism groups. Japan J Math, 1986, 12:192-282.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部