期刊文献+

基于XDR大数据分析和AI技术的定轨道路用户感知识别技术 被引量:2

User Perception Recognition of Fixed Track Road Based on XDR Big Data Analysis and AI Technology
下载PDF
导出
摘要 随着网络结构、业务形态、用户模型的不断变化以及大数据、云计算等技术的不断演进,网络运维成本压力逐年上升,依赖于专业测试软件进行道路测试的传统优化模式已经难以满足未来发展的需要,网络优化亟待智能转型。基于定轨道路用户的真实海量数据,通过聚类算法模型对上海全路段用户感知问题进行定位分析研究。研究结果表明,大数据分析和AI算法的定位精度和优化效率远大于传统路测。 With the continuous change of network structure,business form,user model and the continuous evolution of big data,cloud computing and other technologies,the pressure of network operation and maintenance cost is increasing year by year.The traditional optimization mode relying on professional test software for road test is difficult to meet the needs of future development,and network optimization needs intelligent transformation.Based on the real mass data of rail users,it analyzes and studies the user perception problem location of the whole road section in Shanghai by clustering algorithm model.The results show that the positioning accuracy and optimization efficiency of big data analysis and AI algorithm are much higher than those of traditional road test.
作者 潘晖 齐咏嘉 杭旭峰 姚赛彬 黄久成 Pan Hui;Qi Yongjia;Hang Xufeng;Yao Saibin;Huang Jiucheng(China Unicom Shanghai Branch,Shanghai 200080,China)
出处 《邮电设计技术》 2021年第3期77-83,共7页 Designing Techniques of Posts and Telecommunications
关键词 智能转型 聚类算法 大数据分析 用户感知 Intelligent transformation Clustering algorithm Big data analysis User perception
  • 相关文献

参考文献4

二级参考文献54

  • 1赵珣,刘志.科技期刊在线审稿系统在学术期刊编辑部的应用[J].医学信息学杂志,2008,29(4):79-81. 被引量:10
  • 2索红光,刘玉树,曹淑英.一种基于词汇链的关键词抽取方法[J].中文信息学报,2006,20(6):25-30. 被引量:88
  • 3石晶,戴国忠.基于PLSA模型的文本分割[J].计算机研究与发展,2007,44(2):242-248. 被引量:25
  • 4ARMINGOL J M, DE LA ESCALERA A, HILARIO C, et al. IVVI: Intelligent vehicle based on visual information [J]. Robotics and Autonomous Systems, 2007, 55 (12) : 904 -916.
  • 5DE LA ESCALERA A, SALICHS M. Road traffic sign detection and classification [ J ]. IEEE Trans. Industrial Electronics, 1997, 44(6) : 848 - 859.
  • 6DE LA ESCALERA A, ARMINGOL J M, MATA M. Traffic sign recognition and analysis for intelligent vehicles [J]. Image and Vision Computing, 2003, 21(3) : 247 - 258.
  • 7FLEYEH H. A novel fuzzy approach for shape determi- nation of traffic signs [C]//Proceedings of the 2nd Indian International Conference on Artificial Intelligence. Pune: Springer, 2005 : 1847 - 1862.
  • 8CYGANEK B. Soft system for road signs detection [J]. Advances in Soft Computing, 2007, 41:316-326.
  • 9CYGANEK B. Circular road signs recognition with soft classifiers [J]. Integrated Computer - Aided Engineering, 2007, 14(4) : 323 -343.
  • 10NGUWI Y Y, KOUZANI ABBAS Z. Detection and classification of road signs in natural environments [ J ]. Neural Computing & Applications, 2008, 17 ( 3 ) : 265 - 289.

共引文献30

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部