期刊文献+

基于RAN与深度哈希的图像检索方法研究 被引量:2

Research on image retrieval method based on RAN and deep hashing
下载PDF
导出
摘要 针对基于卷积神经网络提取的图像特征不仅包含目标信息,还包括杂乱的背景信息这一问题,提出了一种基于残差注意力网络与深度哈希的算法,该算法通过残差注意力网络提取图像特征,输入到哈希层得到图像的二进制编码,通过对比待查询图像的哈希码与训练集中每一张图像的哈希码之间的汉明距离来检索图像,可实现端到端的训练和检索。在Flickr和NUS-WIDE数据集上的实验结果表明,与残差网络相比,所提方法在平均检索精度上大约提升了1.1%~2.7%,有较高的准确率且检索性能相对稳定。 Aiming at the problem that image features extracted by convolutional neural network contain target information and messy background information,an algorithm based on residual attention network and deep hashing is proposed.In this algorithm,features are extracted through residual attention network and input into the hash layer to obtain the binary code of the image,and then some imagesare retrieved by comparing the hamming distance between the hash code of the image to be searched and the hash code of each image in the training set,which can realize end⁃to⁃end training and retrieval.The experimental results on Flickr and NUS⁃WIDE data set show that compared with residual network,the method proposed in this paper improves the average retrieval accuracy by about 1.1%-2.7%,with high accuracy and relatively stable retrieval performance.
作者 石灵奇 王玉玫 SHI Lingqi;WANG Yumei(North China Institute of Computing Technology,Beijing 100083,China)
出处 《电子设计工程》 2021年第6期99-103,110,共6页 Electronic Design Engineering
关键词 图像检索 残差学习 残差注意力网络 注意力机制 深度哈希 image retrieval residual learning residual attention network attention mechanism deep hashing
  • 相关文献

参考文献5

二级参考文献95

  • 1LOWED G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004 60(2): 91-110.
  • 2DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005: 886-893.
  • 3KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, South Lake Tahoe, Nevada, US, 2012: 1097-1105.
  • 4DATAR M, IMMORLICA N, INDYK P, et al. Locality sensitive hashing scheme based on p-stable distributions[C]. Proceedings of the ACM Symposium on Computational Geometry, New York, USA, 2004: 253-262.
  • 5ZHANG Lei, ZHANG Yongdong, ZHANG Dongming, et al. Distribution-aware locality sensitive hashingIC]. 19th International Conference on Multimedia Modeling, Huangshan, China, 2013: 395-406.
  • 6KONG Weihao and LI Wujun. Isotropic hashing[C]. Advances in Neural Information Processing Systems, South Lake Tahoe, Nevada, US, 2012: 1646-1654.
  • 7WEISS Y, TORRALBA A, and FERGUS R. Spectral hashing[C]. Advances in Neural Information Processing Systems, Vancouver, Canada, 2009: 1753-1760.
  • 8GONG Yunchao, LAZEBNIK S, GORDO A, et al. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(12): 2916-2929.
  • 9WANG Jun, KUMAR S, and CHANG Shihfu. Semi-Supervised hashing for large scale search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(12): 2393-2406.
  • 10KULIS B and DARRELL T. Learning to hash with binary reconstructive embeddings[C]. Advances in Neural Information Processing Systems, Vancouver, Canada, 2009: 1042-1052.

共引文献606

同被引文献25

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部