期刊文献+

卷积神经网络研究综述 被引量:87

Review of the researches on convolutional neural networks
下载PDF
导出
摘要 回顾了卷积神经网络的发展历程,介绍了卷积神经网络的基本运算单元。在查阅大量资料基础上,重点介绍了有代表性的AlexNet、VGGNet、GoogLeNet、ResNet等,对他们所用到的技术进行剖析,归纳、总结、分析其优缺点,并指出卷积神经网络未来的研究方向。 This paper reviews the development of convolutional neural networks,and introduces the basic operation unit of convolutional neural networks.On the basis of consulting a large amount of information,this paper focuses on the representative convolutional neural networks such as AlexNet,VGGNet,GoogLeNet and ResNet etc.,analyzes the technologies they used,summarizes and analyzes their advantages and disadvantages,and points out the future research direction of convolutional neural networks.
作者 李炳臻 刘克 顾佼佼 姜文志 Li Bingzhen;Liu Ke;Gu Jiaojiao;Jiang Wenzhi(95668 unit of PLA,Kunming,Yunnan 650000,China;Naval Aviation University,Coast Guard Academy)
出处 《计算机时代》 2021年第4期8-12,17,共6页 Computer Era
关键词 卷积神经网络 AlexNet VGGNet GoogLeNet ResNet convolutional neural networks AlexNet VGGNet GoogLeNet ResNet
  • 相关文献

参考文献2

二级参考文献21

  • 1Dalal N,Triggs B.Histograms of oriented gradients forhuman detection[C]//Proceedings of the 2005 IEEE InternationalConference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,2005,1:886-893.
  • 2Wu B,Nevatia R.Optimizing discrimination-efficiencytradeoff in integrating heterogeneous local features forobject detection[C]//Proceedings of the 2008 IEEE InternationalConference on Computer Vision and PatternRecognition.Washington,DC:IEEE Computer Society,2008:1-8.
  • 3Viola P,Jones M.Rapid object detection using a boostedcascade of simple features[C]//Proceedings of CVPR2001,Kauai,HI,USA,2001:511-518.
  • 4Serre T,Wolf L,Bileschi S,et al.Object recognition withcortex-like mechanisms[J].IEEE Transactions on PatternAnalysis and Machine Intelligence,2007,29(3):411-428.
  • 5Ye Q,Liang J,Jiao J.Pedestrian detection in video imagesvia error correcting output code classification of manifoldsubclasses[J].IEEE Transactions on Intelligent TransportationSystems,2012,13(1):193-202.
  • 6Munder S,Gavrila D M.An experimental study on pedestrianclassification[J].IEEE Transactions on Pattern Analysisand Machine Computer Vision,2006,28(11):1863-1868.
  • 7Wu B,Nevatia R.Cluster boosted tree classifier for multiview,multi-pose object detection[C]//Proceedings of the11th IEEE International Conference on Computer Vision.Washington,DC:IEEE Computer Society,2007:1-8.
  • 8Bengio Y.Learning deep architectures for AI[J].Foundationsand Trends in Machine Learning,2009,2(1):1-71.
  • 9Dahl G E,Yu D,Deng L,et al.Context-dependent pretraineddeep neural networks for large-vocabulary speechrecognition[J].IEEE Trans on Audio Speech and LanguageProcessing,2012,20(1):30-42.
  • 10Zhang C,Zhang Z.Improving multiview face detectionwith multi-task deep convolutional neural networks[C]//Proceddings of 2014 IEEE Winter Conference on Applicationsof Computer Vision(WACV),2014:1036-1041.

共引文献78

同被引文献831

引证文献87

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部