摘要
以铁路基础设施和车辆为主要研究对象,结合智能制造涉及的前沿技术和方法,阐述了合理利用工业4.0的内涵要素进行中国下一代智能铁路数字化建设、改造与升级的重要性和必要性;按照工业4.0的基本概念、技术内涵、系统模型和技术框架的影响效果,对比分析了智能基础设施、智慧列车、智能运维及相关技术的实施过程和存在问题,并在此基础上分析了以智慧列车为核心的智能铁路数字化平台建设关键技术;概括了铁路传统制造向智能制造数字化建设的具体技术要求,整理了利用工业4.0六维模型解决人工智能、大数据、云计算和数字孪生等前沿技术与铁路传统制造业的融合问题,包括数据传输与共享、信息通信与安全技术的潜力挖掘、智能管理、技术应用、信息安全、状态智能感知等各个方面。研究结果表明:中国铁路数字信息技术和智能技术与传统制造过程存在融合不足的问题;智能制造的核心技术储备不足,状态智能感知、数据在线分析、工业控制系统等软硬件技术自主性不强;铁路系统大数据建设的数据传输和标准体系也不够完善;未来智能铁路应该加强工业4.0下铁路传统制造的标准化管理系统与数据信息安全系统的数字化设计、升级与改造;需要深刻思考和分析人工智能和大数据驱动等前沿技术与铁路的融合与实施,通过工业4.0涵盖的各项关键技术的实施和准确评估真正有效推动中国智能铁路先进数字化平台的建设和发展。
The importance and necessity of the rational use of the connotative elements of Industry 4.0 for the digital construction, transformation, and upgrading of the next generation intelligent railways of China were explained. To this end, railway infrastructures and vehicles were considered as research objects, and frontier technologies and methods pertaining to intelligent manufacturing were combined. Based on the impacts of basic concept, technical connotation, system model, and technical framework of Industry 4.0, the implementation processes and existing problems of intelligent infrastructure, smart train, intelligent operation and maintenance, and related technologies were compared and analyzed. In addition, the key technologies for the digital platform construction of intelligent railways focusing on smart trains were analyzed. The specific technical requirements for the digital construction corresponding to traditional manufacturing to intelligent manufacturing were summarized. Problems pertaining to the integration of frontier technologies, such as artificial intelligence, big data, cloud computing, and digital twins, with the traditional railway manufacturing, were compiled and solved using a six-dimensional model of Industry 4.0. These problems included the data transmission and sharing, exploration of the potential of information communication and security technology, and intelligent management, technology application, information security, and intelligent state awareness. Research result demonstrates that the integration of digital information technology and intelligent technology with the traditional manufacturing process is insufficient. The core know-how of intelligent manufacturing is inadequate. A lack of autonomy of software and hardware technologies, such as intelligent state awareness, online data analysis, and industrial control systems, is observed. The data transmission and standard system for the construction of big data for the railway system is not perfect. The digital design, upgrade, and transformation of the standardized management system and data information security system of railway traditional manufacturing in Industry 4.0 should be strengthened in future intelligent railways. Deep thinking and analysis of the integration and implementation of frontier technologies including artificial intelligence and big data drive in railways are required. Various key technologies covered in Industry 4.0 should be implemented and accurately evaluated to truly and effectively promote the construction and development of an advanced digital platform for intelligent railways of China. 1 tab, 13 figs, 69 refs.
作者
缪炳荣
张卫华
刘建新
周宁
梅桂明
张盈
MIAO Bing-rong;ZHANG Wei-hua;LIU Jian-xin;ZHOU Ning;MEI Gui-ming;ZHANG Ying(State Key Laboratory of Traction Power,Southwest Jiaotong University,Chengdu 610031,Sichuan,China)
出处
《交通运输工程学报》
EI
CSCD
北大核心
2021年第1期115-131,共17页
Journal of Traffic and Transportation Engineering
基金
国家自然科学基金项目(51775456)
牵引动力国家重点实验室自主课题(2019TPLT03)。
关键词
智能铁路
智慧列车
工业4.0
人工智能
物联网
大数据
intelligent railway
smart train
Industry 4.0
artificial intelligence
internet of things
big data