摘要
由于时变风力涡轮机杂波(WTC)严重影响气象雷达的探测性能,文中研究了基于形态成分分离的风电场杂波抑制算法。该算法首先滤除静止地杂波,以减少回波信号中的形态成分分量;然后,引入形态成分分析思想,并改进短时傅里叶变换窗函数重叠率以减少WTC频谱泄露;最后,通过采用基追踪和分裂增广拉格朗日收缩算法,实现气象信号和WTC高精度稀疏分离。仿真实验结果表明,该算法有效提高了低信噪比条件下WTC的抑制性能。
As the time-varying wind turbine clutter(WTC)seriously affects the detection performance of weather radar,the WTC suppression based on morphological component separation is studied.Firstly,the static ground clutter is filtered to decrease the morphological components of the radar echo.Then the morphological component analysis is implemented and the overlapping rate of window in short-time Fourier transform is improved to reduce the spectrum leakage of WTC.Finally,the basis pursuit and split augmented Lagrangian shrinkage algorithm are presented to decompose radar return signal into the sum of the weather signal and the WTC sparsely.Simulation results show that the proposed algorithm can effectively improve the mitigation performance of WTC in low signal-to-noise ratio environments.
作者
万晓玉
沈明威
吴迪
朱岱寅
WAN Xiaoyu;SHEN Mingwei;WU Di;ZHU Daiyin(College of Computer and Information,Hohai University,Nanjing 211100,China;Key Laboratory of Radar Imagine and Microwave Photonics&Ministry of Education,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《现代雷达》
CSCD
北大核心
2021年第3期74-79,共6页
Modern Radar
基金
国家自然科学基金资助项目(61771182)
中央高校业务费资助项目(B210202076)。
关键词
气象雷达
风电场杂波
短时傅里叶变换
形态成分分析
weather radar
wind turbine clutter
short-time Fourier transform
morphological component analysis