摘要
针对传统土壤含水量预测算法存在的精度和效率较低等问题,采用支持向量机(SVM,support vector machine)建立预测模型,提出一种改进樽海鞘群算法(SSA,salp swarm algorithm)优化SVM的土壤含水量预测算法。首先,引入反向学习和混沌优化对标准樽海鞘群算法进行改进,解决算法易陷入局部最优解和收敛速度慢的问题;其次,利用改进的樽海鞘群算法对影响SVM性能的参数进行优化,构建对应的预测模型;最后,将所提模型与粒子群优化SVM预测模型、鲸鱼算法优化SVM预测模型进行对比。实验结果表明,所提模型的均方误差和决定系数分别为0.42和0.901,与其他两种模型相比性能更优,验证了所提算法的有效性。
Aiming at the problems of low accuracy and low efficiency of traditional soil water content prediction methods,support vector machine(SVM)was used to establish a prediction model,and the soil water content prediction method based on SVM optimized was proposed by the improved salp swarm algorithm.Firstly,the opposition-based learning and chaotic optimization were introduced to improve the standard salp swarm algorithm to solve the problem that the algorithm was easy to fall into the local optimal solution and its convergence speed was slow.Secondly,the improved salp swarm algorithm was used to optimize the parameters that affect the performance of SVM and the corresponding prediction model was built.Finally,the proposed model was compared with the particle swarm optimization SVM and the whale algorithm optimized SVM prediction model.The experimental results show that the mean square error and decision coefficient of the proposed model are 0.42 and 0.901,which are better than the other two models which verified the effectiveness of the proposed method.
作者
赵小强
杨帆
晏珠峰
ZHAO Xiaoqiang;YANG Fan;YAN Zhufeng(Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处
《物联网学报》
2021年第1期99-107,共9页
Chinese Journal on Internet of Things
基金
国家自然科学基金委员会—雅砻江联合基金资助项目(No.U1965102)
陕西省创新人才推进计划—科技创新团队(No.2019TD-28)
西安市科技计划项目(No.201806117YF05NC13-2)
陕西省教育厅产业化培育项目(No.18JF029)
陕西省国际合作计划项目(No.2018KW-025)。
关键词
土壤含水量预测
支持向量机
樽海鞘群算法
反向学习
混沌优化
soil water content prediction
support vector machine
salp swarm algorithm
opposition-based learning
chaotic optimization